期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Short Review:Mitochondrion and its related disorders:Making a comeback 被引量:3
1
作者 xian-ning zhang Ming QI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第2期90-92,共3页
The great majority of genetic disorders are caused by defects in the nuclear genome. However, some significant diseases are the result of mitochondrial mutations. Because of the unique features of the mitochondria, th... The great majority of genetic disorders are caused by defects in the nuclear genome. However, some significant diseases are the result of mitochondrial mutations. Because of the unique features of the mitochondria, these diseases display characteristic modes of inheritance and a large degree of phenotypic variability. Recent studies have suggested that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. 展开更多
关键词 线粒体 无序状态 基因突变 遗传学
下载PDF
Complete mitochondrial DNA sequence analysis in two southern Chinese pedigrees with Leber hereditary optic neuropathy revealed secondary mutations along with the primary mutation 被引量:5
2
作者 Lei Shu Yong-Ming zhang +2 位作者 Xiao-Xiao Huang Chun-Yue Chen xian-ning zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第1期28-31,共4页
AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: T... AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease. METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap. RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg -> His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C34971 (Ala -> Val), and C3571T (Leu -> Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr -> Ala) in the MT-ND3 gene, and T14502C (Ile -> Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found. CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1; they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND3 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling. 展开更多
下载PDF
A novel CRX mutation by whole-exome sequencing in an autosomal dominant cone-rod dystrophy pedigree
3
作者 Qin-Kang Lu Na Zhao +9 位作者 Ya-Su Lv Wei-Kun Gong Hui-Yun Wang Qi-Hu Tong Xiao-Ming Lai Rong-Rong Liu Ming-Yan Fang Jian-Guo zhang Zhen-Fang Du xian-ning zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第6期1112-1117,共6页
AIMTo identify the disease-causing gene mutation in a Chinese pedigree with autosomal dominant cone-rod dystrophy (adCORD).METHODSA southern Chinese adCORD pedigree including 9 affected individuals was studied. Whole-... AIMTo identify the disease-causing gene mutation in a Chinese pedigree with autosomal dominant cone-rod dystrophy (adCORD).METHODSA southern Chinese adCORD pedigree including 9 affected individuals was studied. Whole-exome sequencing (WES), coupling the Agilent whole-exome capture system to the Illumina HiSeq 2000 DNA sequencing platform was used to search the specific gene mutation in 3 affected family members and 1 unaffected member. After a suggested variant was found through the data analysis, the putative mutation was validated by Sanger DNA sequencing of samples from all available family members.RESULTSThe results of both WES and Sanger sequencing revealed a novel nonsense mutation c.C766T (p.Q256X) within exon 5 of CRX gene which was pathogenic for adCORD in this family. The mutation could affect photoreceptor-specific gene expression with a dominant-negative effect and resulted in loss of the OTX tail, thus the mutant protein occupies the CRX-binding site in target promoters without establishing an interaction and, consequently, may block transactivation.CONCLUSIONAll modes of Mendelian inheritance in CORD have been observed, and genetic heterogeneity is a hallmark of CORD. Therefore, conventional genetic diagnosis of CORD would be time-consuming and labor-intensive. Our study indicated the robustness and cost-effectiveness of WES in the genetic diagnosis of CORD. 展开更多
关键词 cone-rod dystrophy autosomal dominant cone-rod dystrophy whole-exome sequencing Sanger sequencing CRX gene MUTATION
下载PDF
Deletion analysis of SMN1 and NAIP genes in southern Chinese children with spinal muscular atrophy 被引量:5
4
作者 Yu-hua LIANG Xiao-ling CHEN +5 位作者 Zhong-sheng YU Chun-yue CHEN Sheng BI Lian-gen MAO Bo-lin ZHOU xian-ning zhang 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第1期29-34,共6页
Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three... Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are rec- ognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMN1 and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMA1 patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMN1 exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NAIP deletion. The findings of homozygous deletions of exon 7 and/or exon 8 of SMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion of SMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NAIP gene may be a modifying factor for disease severity of SMA1. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA. 展开更多
关键词 医学遗传学 SMN 遗传基因 研究
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部