We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetri...We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12465020,12005802,12005109)the Jiangxi Provincial Natural Science Foundation(20202BAB211008)+3 种基金he Jiangxi Normal University(JXNU)Initial Research Foundation Grant to Doctor(12019504)the Young Talents Program under JXNU(12019870)the PhD Foundation of Chongqing Normal University(No.23XLB010)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202300509).
文摘We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.