Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η)...Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η),and density(ρ)of the DMI−ZnCl_(2)solvated ionic liquid at various temperatures(T)were measured and fitted.Furthermore,cyclic voltammetry was used to study the electrochemical behavior of Zn(II)in the DMI−ZnCl_(2)solvated ionic liquid,indicating that the reduction of Zn(II)on the tungsten electrode was a one-step two-electron transfer irreversible process.XRD and SEM−EDS analysis of the cathode product confirmed that the deposited coating was metallic zinc.Finally,the effects of deposition potential,temperature and duration on the morphology of zinc coatings were investigated.The results showed that a dense and uniform zinc coating was obtained by potentiostatic electrodeposition at−2 V(vs Pt)and 353 K for 1 h.展开更多
To investigate the electrochemical reduction mechanism of Ta(Ⅴ)in ethylene carbonate and aluminum chloride(EC-AlCl3)solvate ionic liquid,cyclic voltammetry experiments were conducted on a tungsten working electrode.F...To investigate the electrochemical reduction mechanism of Ta(Ⅴ)in ethylene carbonate and aluminum chloride(EC-AlCl3)solvate ionic liquid,cyclic voltammetry experiments were conducted on a tungsten working electrode.Four reduction peaks were observed in the cyclic voltammogram of the EC-AlCl3-TaCl5 ionic liquid.The reduction peaks at-0.55,-0.72,and-1.12 V(vs Al)were related to the reduction of Ta(Ⅴ)to tantalum metal by three stages including the formation of Ta(Ⅳ)and Ta(Ⅲ)complex ions.The reduction of Ta(Ⅲ)to tantalum metal was an irreversible diffusion-controlled reaction with a diffusion coefficient of 3.7×10^-7 cm^2/s at 323 K,and the diffusion activation energy was 77 k J/mol.Moreover,the cathode products at 323 K were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and X-ray photoelectron spectroscopy.The results showed that tantalum metal and tantalum oxides were obtained by potentiostatic electrodeposition at-0.8 V for 2 h.展开更多
The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism an...The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.展开更多
The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrol...The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrolyte.In this paper,the theoretical Raman spectra of the ionic groups which may exist in YCl_(3)-KCl molten system are simulated by quantum chemical calculation using Gaussian09 and Gauss View 5.0 programs based on density functional theory(DFT).Then the ionic structures of 20 mol%-60 mol%YCl_(3)-KCl molten salt systems are studied by comparing the Raman shift values of the bands in the theoretical Raman spectra of different ionic groups with the experimental spectra of this system.YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)are thought to exist in the molten system.With the increase of temperature,the relative content of YCl_(6)^(3-)ionic groups increases while those of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)ionic groups decrease.Moreover,the"lifetime"of all ionic groups decreases within the temperature range of 692-730℃.Meanwhile,the relative contents of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)increase with the increase of YCl_(3)content,while that of YCl_(6)^(3-)decreases.The wave function analysis of the four ionic groups(YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-),and Y_(2)Cl_(9)^(3-))is carried out by Multiwfn program.The net charge in each group,the direction of electron migration during the formation of each group,the sites where electrophilic and nucleophilic reactions are most likely to occur in each ionic group,and the order of bond breaking during chemical reactions for the four groups are obtained.展开更多
基金supports from the National Natural Science Foundation of China (No.52004062)the Fundamental Research Funds for the Central Universities,China (No.N2125014).
基金The authors are grateful for the financial supports from the Fundamental Research Funds for the Central Universities,China(N182503033,N172502003)Postdoctoral Research Foundation of China(2018M640258)+1 种基金the National Natural Science Foundation of China(51804070)Guangxi Innovation-driven Development Program,China(GUIKE AA18118030).
文摘Zinc chloride(ZnCl_(2))was dissolved in the 1,3-dimethyl-2-imidazolinone(DMI)solvent,and the metallic zinc coatings were obtained by electrodeposition in room-temperature ambient air.The conductivity(σ),viscosity(η),and density(ρ)of the DMI−ZnCl_(2)solvated ionic liquid at various temperatures(T)were measured and fitted.Furthermore,cyclic voltammetry was used to study the electrochemical behavior of Zn(II)in the DMI−ZnCl_(2)solvated ionic liquid,indicating that the reduction of Zn(II)on the tungsten electrode was a one-step two-electron transfer irreversible process.XRD and SEM−EDS analysis of the cathode product confirmed that the deposited coating was metallic zinc.Finally,the effects of deposition potential,temperature and duration on the morphology of zinc coatings were investigated.The results showed that a dense and uniform zinc coating was obtained by potentiostatic electrodeposition at−2 V(vs Pt)and 353 K for 1 h.
基金Projects(N182503033N172502003)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2018M640258)supported by Postdoctoral Research Foundation of ChinaProject(GUIKE AA18118030)supported by Guangxi Innovation-driven Development Program,China。
文摘To investigate the electrochemical reduction mechanism of Ta(Ⅴ)in ethylene carbonate and aluminum chloride(EC-AlCl3)solvate ionic liquid,cyclic voltammetry experiments were conducted on a tungsten working electrode.Four reduction peaks were observed in the cyclic voltammogram of the EC-AlCl3-TaCl5 ionic liquid.The reduction peaks at-0.55,-0.72,and-1.12 V(vs Al)were related to the reduction of Ta(Ⅴ)to tantalum metal by three stages including the formation of Ta(Ⅳ)and Ta(Ⅲ)complex ions.The reduction of Ta(Ⅲ)to tantalum metal was an irreversible diffusion-controlled reaction with a diffusion coefficient of 3.7×10^-7 cm^2/s at 323 K,and the diffusion activation energy was 77 k J/mol.Moreover,the cathode products at 323 K were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and X-ray photoelectron spectroscopy.The results showed that tantalum metal and tantalum oxides were obtained by potentiostatic electrodeposition at-0.8 V for 2 h.
基金financial supports from the National Natural Science Foundation of China(Nos.52004062,52074084,51804070)the Natural Science Foundation of Liaoning Province of China(No.2020-MS-084)the Guangxi Innovation-Driven Development Program,China(No.GUIKE AA18118030)。
文摘The density,conductivity,and viscosity of the 1,3-dimethyl-2-imidazolinone and lithium nitrate(DMILiNO_(3))solvated ionic liquid were measured as a function of temperature.Additionally,the electrochemical mechanism and electrodeposition of neodymium from the DMI-LiNO_(3) solvated ionic liquid were investigated.Cyclic voltammetry results indicate that the electrochemical reduction of Nd(Ⅲ)is irreversible and proceeds via one-step with three-electron transfer,which is controlled by diffusion with a diffusion coefficient of 5.08×10^(-8) cm^(2)/s.Energydispersive X-ray spectrometry and X-ray photoelectron spectroscopy data confirm that the electrodeposit obtained after electrodeposition at-4 V(vs Ag)using the DMI-LiNO_(3)-Nd(CF_(3)SO_(3))_(3) solvated ionic liquid contains metallic neodymium.
基金financially supported by the National Natural Science Foundation of China (No.51974081)the Fundamental Research Funds for the Central Universities (No.N2225045)MOE of China and WEIQIAO Industry-Education Cooperation Project (No.2021021800102)。
文摘The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrolyte.In this paper,the theoretical Raman spectra of the ionic groups which may exist in YCl_(3)-KCl molten system are simulated by quantum chemical calculation using Gaussian09 and Gauss View 5.0 programs based on density functional theory(DFT).Then the ionic structures of 20 mol%-60 mol%YCl_(3)-KCl molten salt systems are studied by comparing the Raman shift values of the bands in the theoretical Raman spectra of different ionic groups with the experimental spectra of this system.YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)are thought to exist in the molten system.With the increase of temperature,the relative content of YCl_(6)^(3-)ionic groups increases while those of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)ionic groups decrease.Moreover,the"lifetime"of all ionic groups decreases within the temperature range of 692-730℃.Meanwhile,the relative contents of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)increase with the increase of YCl_(3)content,while that of YCl_(6)^(3-)decreases.The wave function analysis of the four ionic groups(YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-),and Y_(2)Cl_(9)^(3-))is carried out by Multiwfn program.The net charge in each group,the direction of electron migration during the formation of each group,the sites where electrophilic and nucleophilic reactions are most likely to occur in each ionic group,and the order of bond breaking during chemical reactions for the four groups are obtained.