期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Thermosphere joint observations by TM-1 constellations and Swarm-B during the April 2023 geomagnetic storm
1
作者 YongPing Li YueQiang Sun +9 位作者 xianguo zhang JiangZhao Ai XiaoLiang Zheng Jia Li YuJie Wang BiBo Guo Feng Yan ShiLong Wei XinChun Tang YuanYuan Cao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期307-316,共10页
The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this p... The response of thermosphere density to geomagnetic storms is a complicated physical process.Multi-satellite joint observations at the same altitude but different local times(LTs)are important for understanding this process;however,until now such studies have hardly been done.In this report,we analyze in detail the thermosphere mass density response at 510 km during the April 23−24,2023 geomagnetic storm using data derived from the TM-1(TianMu-1)satellite constellation and Swarm-B satellites.The observations show that there were significant LT differences in the hemispheric asymmetry of the thermosphere mass density during the geomagnetic storm.Densities observed by satellite TM02 at nearly 11.3 and 23.3 LTs were larger in the northern hemisphere than in the southern.The TM04 dayside density observations appear to be almost symmetrical with respect to the equator,though southern hemisphere densities on the nightside were higher.Swarm-B data exhibit near-symmetry between the hemispheres.In addition,the mass density ratio results show that TM04 nightside observations,TM02 data,and Swarm-B data all clearly show stronger effects in the southern hemisphere,except for TM04 on the dayside,which suggest hemispheric near-symmetry.The South-North density enhancement differences in TM02 and TM04 on dayside can reach 130%,and Swarm-B data even achieve 180%difference.From the observations of all three satellites,large-scale traveling atmospheric disturbances(TADs)first appear at high latitudes and propagate to low latitudes,thereby disturbing the atmosphere above the equator and even into the opposite hemisphere.NRLMSISE00 model simulations were also performed on this geomagnetic storm.TADs are absent in the NRLMSISE00 simulations.The satellite data suggest that NRLMSISE00 significantly underestimates the magnitude of the density response of the thermosphere during geomagnetic storms,especially at high latitudes in both hemispheres.Therefore,use of the density simulation of NRLMSISE00 may lead to large errors in satellite drag calculations and orbit predictions.We suggest that the high temporal and spatial resolution of direct density observations by the TM-1 constellation satellites can provide an autonomous and reliable basis for correction and improvement of atmospheric models. 展开更多
关键词 TM-1 constellation Swarm-B joint observations geomagnetic storm Local Times
下载PDF
Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs
2
作者 Xin Huang Yunpeng Jiang +3 位作者 Daowu Huang Xianke He xianguo zhang Ping Guo 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1679-1691,共13页
The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,stro... The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,strong heterogeneity,and high water saturation.Moreover,their percolation mechanisms are more complex.The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressuredepletion conditions(from the Xihu Depression in the East China Sea Basin).It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity.The reservoir stress sensitivity is related to permeability and rock composition.Stress sensitivity is generally low when permeability is high or in the early stage of gas reservoir development.It is also shown that in sand conglomerates,especially the more sparsely filled parts,the interstitial materials among the conglomerates can be rapidly dislodged from the skeleton particles under stress.This material can therefore disperse,migrate,and block the pore throat producing serious,stress-sensitive damage. 展开更多
关键词 Seepage mechanism low-permeability gas reservoir threshold pressure gradient stress sensitivity control factors
下载PDF
中国空间站运行轨道上大气密度就位探测 被引量:1
3
作者 李永平 孙越强 +6 位作者 张贤国 郑晓亮 艾讲赵 李佳 王玉洁 朱光武 陈光明 《科学通报》 EI CAS CSCD 北大核心 2023年第1期128-136,共9页
我国空间站已经进入建造阶段,开启了载人航天新征程.根据我国空间站试验任务需求,自主设计研制了空间站核心舱大气密度多向探测器,探测获取空间站运行高度上大气密度的时空分布变化,为空间站的飞控管理、精密定位和分析服务,并积累长期... 我国空间站已经进入建造阶段,开启了载人航天新征程.根据我国空间站试验任务需求,自主设计研制了空间站核心舱大气密度多向探测器,探测获取空间站运行高度上大气密度的时空分布变化,为空间站的飞控管理、精密定位和分析服务,并积累长期自主探测数据,为地球空间中性环境物理模式和效应研究提供基础数据.本文主要介绍了探测器的探测目标、载荷配置、长寿命设计等情况,同时使用在轨探测初步结果进行了运行轨道上大气密度的变化特性分析,呈现出日侧和夜侧轨道圈上大气密度变化,2021年9月11~14日和11月19~22日空间环境平静期日侧和夜侧的峰谷比在2~3之间;2021年11月4日的较强地磁暴期间实测大气密度峰值增加至1.966倍,而模式值峰值增加至1.483倍,磁暴恢复期模式为6h,而实测数据晚12 h;2022年3月13日的磁暴事件期间,实测大气密度增加至1.424倍,模式值增加至1.250倍,大气密度全球抬升从南半球开始,扩展到北半球,与2021年11月4日扰动源位置相反;统计了2021~2022年期间6次磁暴事件,大气密度抬升比例与磁暴强度、持续时间呈正相关;2021年12月11~31日空间环境平静期,实测值和模式的日均值相对偏差小于10%.实测数据与模式数据相比,增变幅度大、传播范围广、持续时间长、响应更加灵敏.实测数据将为地球空间环境物理与效应研究提供长期自主数据库. 展开更多
关键词 空间站 大气密度 空间探测 空间环境
原文传递
Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir:From Model to Real Data 被引量:8
4
作者 Tao zhang xianguo zhang +2 位作者 Chengyan Lin Jingfeng Yu Shouxiu zhang 《Journal of Earth Science》 SCIE CAS CSCD 2015年第4期598-606,共9页
Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical reso- lution. In this study, ... Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical reso- lution. In this study, a seismic sedimentology interpretation method and workflow for point bar char- acterization is built. Firstly, the influences of seismic frequency and sandstone thickness on seismic re- flection are analyzed by outcrop detection with ground penetrating radar (GPR) and seismic forward modeling. It is found that (1) sandstone thickness can influence seismic reflection of point bar architecture. With the increasing of sandstone thickness from 1/4 wavelength (λ) to λ/2, seismic reflection geometries various from ambiguous reflection, "V" type reflection to "X" type reflection; (2) seismic frequency can influence reservoirs' seismic reflection geometry. Seismic events follow inclined lateral aggradation surfaces, which is isochronic depositional boundaries, in high frequency seismic data while the events extend along lithologic surfaces, which are level, in low frequency data. Secondly, strata slice interpretation method for thin layer depositional characterization is discussed with seismic forward modeling. Lastly, a method and workflow based on the above study is built which includes seismic frequency analysis, 90° phasing, stratal slicing and integrated interpretation of slice and seismic profile. This method is used in real data study in Tiger shoal, the Gulf of Mexico. Two episodes of meandering fluvial deposition is recognized in the study layer. Sandstone of the lower unit, which is formed in low base level stage, distributes limited. Sandstone distribution dimension and channel sinuosity become larger in the upper layer, which is high base level deposition. 展开更多
关键词 point bar reservoir architecture seismic sedimentology stratal slice.
原文传递
3D geocellular modeling for reservoir characterization of lacustrine turbidite reservoirs:Submember 3 of the third member of the Eocene Shahejie Formation,Dongying depression,Eastern China
5
作者 Marco Shaban Lutome Chengyan Lin +2 位作者 Dong Chunmei xianguo zhang Januarius Matata Bishanga 《Petroleum Research》 2022年第1期47-61,共15页
3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-wa... 3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-water turbidite reservoirs using conventional modeling methods pose a significant challenge due to the structural complexity and thin-beds associated with these reservoirs.Through the innovative modeling technology of PaleoScan,the reservoirs in Sub member 3 of the third member of the Shahejie Formation are modeled to understand the structural framework.The resulting model is populated with petrophysical properties i.e.,porosity and permeability to predict their lateral and vertical distribution within these sandstone reservoirs.The study suggests that the reservoir in the highstand system tract(HST)is characterized by the clinoforms configuration framework.The reservoir is highly faulted mainly in the northern and southeastern parts of the depression.The sedimentary layers are deposited across the slope and downlapping,thinning,and terminating toward to the west.The two isochore surface maps reveal sediment thickness variation and depositional trends within each individual depositional layer.The zones or areas that corresponds to low values on the thickness maps suggest minor uplifts associated with intensive faulting in the Eocene period.These topographical highs played a fundamental role in distributing the sediments delivered to the basin from distant sources.The maps reveal that sediments that filled the basin appear to come from different source points,primarily delivered from the north,southeast,and northeast of the basin with varying depositional trends.The modeled porosity and permeability indicate that the delta fed turbidite reservoirs are characterized by medium to high porosity values of 10e20%and low to medium permeability values of 30-410mD,respectively.The porosity values increase to the southeast and toward the basinwards(west)while permeability varies within the individual sedimentary layers.The distribution of porosity and permeability is not uniform vertically.This suggests the presence of mixed none-reservoir layers with locally and periodically deposited sandstone reservoirs within the stratigraphic during rapid delta progradation.The HST is characterized by six different delta progradation cycles;each phase produced locally deposited lacustrine turbidite sandstones in the basin,which are essential reservoirs in this Formation.The innovative PaleoScan interpretation technology has successfully created a high-resolution 3D reservoir model of this complex geology-such innovative technology is vital to similar complex geology globally. 展开更多
关键词 Geomodelling Geocellular modelling Dongying depression Property modelling Reservoir characterization Lacustrine turbidites
原文传递
Return to the Moon:New perspectives on lunar exploration
6
作者 Yangting Lin Wei Yang +24 位作者 Hui zhang Hejiu Hui Sen Hu Long Xiao Jianzhong Liu Zhiyong Xiao Zongyu Yue Jinhai zhang Yang Liu Jing Yang Honglei Lin Aicheng zhang Dijun Guo Sheng Gou Lin Xu Yuyang He xianguo zhang Liping Qin Zongcheng Ling Xiongyao Li Aimin Du Huaiyu He Peng zhang Jinbin Cao Xianhua Li 《Science Bulletin》 SCIE EI CAS 2024年第13期2136-2148,共13页
Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity’s exploration of deep space.Over the past decade,the Chinese Lunar Exploration Prog... Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity’s exploration of deep space.Over the past decade,the Chinese Lunar Exploration Program(CLEP),also known as the Chang’e(CE)Project,has achieved remarkable milestones.It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface.Notably,the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon,along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane.These achievements have significantly enhanced our understanding of lunar evolution.Building on this success,China has proposed an ambitious crewed lunar exploration strategy,aiming to return to the Moon for scientific exploration and utilization.This plan encompasses two primary phases:the first crewed lunar landing and exploration,followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface.Recognizing the limitations of current lunar exploration efforts and China’s engineering and technical capabilities,this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration.The study refines fundamental lunar scientific questions that could lead to significant breakthroughs,considering the respective engineering and technological requirements.This research lays a crucial foundation for defining the objectives of future lunar exploration,emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science. 展开更多
关键词 Crewed lunar exploration Water and volatiles Composition and structure of lunar interior Volcanic activity and evolution of lunar mantle Space weathering and radiation environments Exploration technology
原文传递
Key Questions of Solar Wind-Moon Interaction
7
作者 Hui zhang Jinbin Cao +5 位作者 Yangting Lin Yong Wei Lei Li xianguo zhang Honglei Lin Lianghai Xie 《Space(Science & Technology)》 EI 2023年第1期402-415,共14页
Key questions on solar wind-Moon interaction are reviewed.As the nearest celestial body to Earth,Moon’s space environment is distinctive to Earth’s mainly because of lack of a significant atmosphere/ionosphere and a... Key questions on solar wind-Moon interaction are reviewed.As the nearest celestial body to Earth,Moon’s space environment is distinctive to Earth’s mainly because of lack of a significant atmosphere/ionosphere and a global magnetic field.From a global respective,solar wind can bombard its surface,and the solar wind materials cumulated in the soil record the evolution of the Solar System.Many small-scale remanent magnetic fields are scattered over the lunar surface and,just as planetary magnetic fields protect planets,they are believed to divert the incident solar wind and shield the local lunar surface beneath,thus producing unique local surface environment that is critical to activities of human beings/facilities,thus providing unique landing sites to explore the origins of lunar swirls and remanent magnetic fields.Evidences have hinted that this local interaction,however,may be also distinct with the interacting scenario on planets,and the specific process has not been revealed because of lack of in situ observations in the near-Moon space or on the ground.The global and local solar wind interactions of the Moon represent 2 types of characteristic interaction of celestial bodies with stellar wind in deep space,i.e.,the interactions of nonmagnetized bodies and of small-scale magnetized bodies,both of which may occur on asteroids and Mars.The deep-space celestial bodies,either difficult or impossible to reach for human beings or artificial satellites,are hard to measure,and the exploration of the Moon can reveal the mystery of stellar wind interaction on these bodies. 展开更多
关键词 Solar stellar Wind
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部