期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Propeller-shaped NI isomers of cathode interfacial material for efficient organic solar cells
1
作者 Hao Liu Jilei Jiang +6 位作者 Shuixing Dai Liangmin Yu Xu Zhang xianbiao hou Ke Gao Heqing Jiang Minghua Huang 《Nano Research》 SCIE EI CSCD 2024年第3期1564-1570,共7页
Cathode interfacial materials(CIMs)stand as critical elemental in organic solar cells(OSCs),which can align energy levels,and foster ohmic contacts between the cathode and active layer of the OSCs.Nevertheless,the lag... Cathode interfacial materials(CIMs)stand as critical elemental in organic solar cells(OSCs),which can align energy levels,and foster ohmic contacts between the cathode and active layer of the OSCs.Nevertheless,the lagging advancement in CIMs has concurrently engendered the oversight of theoretical inquiries pertaining to the impact of molecular structure on their performance.Delving into this realm,we present two propeller-shaped isomers,4,4',4''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione)(3ONIN)and 6,6',6''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-triyl)tris(2-(3-(dimethylamino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione)(3PNIN),distinguished by their molecular planarity,as a promising foundation for crafting highly efficient OSCs.This study illuminates the superiority of 3PNIN with more plane structure,exemplified by its enhanced molar extinction coefficient,deeper lowest unoccupied molecular orbital(LUMO)and highest occupied molecular orbital(HOMO)energy levels,intensified self-doping effect,heightened electron mobility,and elevated conductivity,in comparison to its counterpart,3ONIN.As a result,3PNIN and 3ONIN-treated OSC devices yield efficiencies of 17.73%and 16.82%,respectively.This finding serves as a compelling validation of the critical role played by molecular planarity in influencing CIM performance. 展开更多
关键词 propeller-shaped molecules naphthalimide(NI)isomers cathode interfacial materials organic solar cells
原文传递
Interface engineering of NiSe_(2) nanowrinkles/Ni_(5)P_(4)nanorods for boosting urea oxidation reaction at large current densities
2
作者 Jinyang Li Xiujuan Xu +6 位作者 xianbiao hou Shucong Zhang Ge Su Weiqian Tian Huanlei Wang Minghua Huang Arafat Toghan 《Nano Research》 SCIE EI CSCD 2023年第7期8853-8862,共10页
Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remai... Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption.In response,we report the coupled NiSe_(2)nanowrinkles with Ni_(5)P_(4)nanorods heterogeneous structure onto Ni foam(denoted as NiSe_(2)@Ni_(5)P_(4)/NF)through successive phosphorization and selenization strategy,in which the produced closely contacted interface could provide high-flux electron transfer pathways.Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni_(5)P_(4)to NiSe_(2),which is conducive to optimizing adsorption energy of urea molecules.As expected,the well-designed NiSe_(2)@Ni_(5)P_(4)/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm^(-2).More importantly,a small Tafel slope of 27.6 mV·dec^(-1),a high turnover frequency(TOF)value of 1.037 s^(-1)as well as the prolonged stability of 950 h at the current density of 100 mA·cm^(-2)are also achieved.This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts. 展开更多
关键词 urea oxidation reaction(UOR) interface engineering nickel phosphide nickel selenide large current densities
原文传递
Coupling of NiFe-Based Metal-Organic Framework Nanosheet Arrays with Embedded Fe-Ni_(3)S_(2) Clusters as Efficient Bifunctional Electrocatalysts for Overall Water Splitting 被引量:3
3
作者 xianbiao hou Tianyuan Jiang +6 位作者 Xiujuan Xu Xingkun Wang Jian Zhou Huimin Xie Zhicheng Liu Lei Chu Minghua Huang 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第7期74-80,共7页
Developing highly efficient,easy-to-make and cost-effective bifunctional electrocatalysts for water splitting with lower cell voltages is crucial to producing massive hydrogen fuel.In response,the coupled hierarchical... Developing highly efficient,easy-to-make and cost-effective bifunctional electrocatalysts for water splitting with lower cell voltages is crucial to producing massive hydrogen fuel.In response,the coupled hierarchical Ni/Fe-based MOF nanosheet arrays with embedded metal sulfide nanoclusters onto nickel foam skeleton(denoted as Fe-Ni_(3)S_(2)@NiFe-MOF/NF)are fabricated,in which the Fe-Ni_(3)S_(2) clusters could effectively restrain the aggregation of the layer metal-organic frameworks(MOF)nanosheets and adjust the local electronic structures of MOFs nanosheets.Benefiting from the rapid charge transfer and the exposure of abundant active sites,the well-designed Fe-Ni_(3)S_(2)@NiFe-MOF/NF displays excellent oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance.More importantly,when equipped in the alkaline water electrolyzer,the Fe-Ni_(3)S_(2)@Ni Fe-MOF/NF enables the system with a mere 1.6 V for achieving the current density of 10 mA cm^(-2).This work offers a paradigm for designing efficient bifunctional HER/OER electrocatalysts based on the hybrid materials of nanostructured metal sulfide and MOF. 展开更多
关键词 metal-organic frameworks metal sulfides nanosheet arrays ELECTROCATALYSTS water splitting
原文传递
Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis 被引量:1
4
作者 Xiujuan Xu xianbiao hou +5 位作者 Puyu Du Canhui Zhang Shucong Zhang Huanlei Wang Arafat Toghan Minghua Huang 《Nano Research》 SCIE EI CSCD 2022年第8期7124-7133,共10页
Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the c... Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future. 展开更多
关键词 Ni/NiO controllable interface engineering urea oxidation reaction hydrogen evolution reaction urea electrolysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部