An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window(8-13μm),low solar absorption,good stability,scalability,and a simpl...An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window(8-13μm),low solar absorption,good stability,scalability,and a simple structure for effective diurnal radiative cooling.Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control.Here,we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional(3D)trench-like structures in a thin layer of polymer for high-performance radiative cooling.The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method.It exhibits superior spectral breadth and selectivity,which offers outstanding omnidirectional absorption/emission(96.1%)in the atmospheric transparency window,low solar absorption(4.8%),and high stability.Impressive cooling power of 129.8 W m^(-2) and temperature deduction of 7℃ on a clear sky midday have been achieved,promising broad practical applications in energy saving and passive heat dispersion fields.展开更多
基金the Australia Research Council through the Discovery Project scheme(Grant Nos.DP190103186,DP220100603)the support through the Industrial Transformation Training Centres scheme(Grant No.IC180100005)+4 种基金Future Fellowship scheme(Grant No.FT210100806)the support through the Future Fellowship scheme(Grant No.FT220100559)the support through the Discovery Early Career Researcher Award scheme(DE230100383)the Suzhou Science and Technology Plan(Grant No.SYG202118)the Natural Science Foundation of Shandong Province(Grant No.ZR2021ME162).
文摘An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window(8-13μm),low solar absorption,good stability,scalability,and a simple structure for effective diurnal radiative cooling.Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control.Here,we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional(3D)trench-like structures in a thin layer of polymer for high-performance radiative cooling.The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method.It exhibits superior spectral breadth and selectivity,which offers outstanding omnidirectional absorption/emission(96.1%)in the atmospheric transparency window,low solar absorption(4.8%),and high stability.Impressive cooling power of 129.8 W m^(-2) and temperature deduction of 7℃ on a clear sky midday have been achieved,promising broad practical applications in energy saving and passive heat dispersion fields.