期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-Source Spatial Data Distribution Model and System Implementation
1
作者 Jing Liu xiancheng mao 《Communications and Network》 2013年第1期93-98,共6页
The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on th... The Multi-source spatial data distribution is based on WebGIS, and it is an important part of multi-source geographic information management system. a new multi-source spatial data distribution model is proposed on the basis of multisource data storage model and by combining existing map distribution technology, The author developed a multi-source spatial data distribution system which based on MapGIS K9 by using this model and taking full advantage of interfacecode separating thinking and high efficiency characteristic of .net, so high-speed distribution of multi-source spatial data realized. 展开更多
关键词 MULTI-SOURCE SPATIAL DATA DISTRIBUTION Model WEBGIS MAPGIS K9
下载PDF
Space-associated domain adaptation for three-dimensional mineral prospectivity modeling 被引量:1
2
作者 Yang Zheng Hao Deng +5 位作者 Jingjie Wu Ruisheng Wang Zhankun Liu Lixin Wu xiancheng mao Jing Chen 《International Journal of Digital Earth》 SCIE EI 2023年第1期2885-2911,共27页
Geographical information systems(GIS)are essential tools for mineral prospectivity modeling(MPM).Three-dimensional(3D)MPM is able to learn the association between geological evidence and mineralization in shallow zone... Geographical information systems(GIS)are essential tools for mineral prospectivity modeling(MPM).Three-dimensional(3D)MPM is able to learn the association between geological evidence and mineralization in shallow zones and thereby build a prospectivity model for deep zones,making it a desirable technique to target deep-seated orebodies.However,existing 3D MPM methods directly generalize the model learned in shallow zones to the deep zones without attention to model transferability caused by the different metallogenic mechanisms between the two zones.In this study,we aim to robustly transfer the prospectivity model learned from shallow zones to deep zones.We cast the 3D MPM as a domain adaptation problem,which is an important realm of transfer learning.Because the metallogenic mechanism can be closely associated with spatial locations,we specifically focus on domain adaption concerning the spatial locations that are ignored by conventional domain adaptation methods.To measure the spatial-associated domain discrepancy,we propose a novel spatial-associated maximum mean discrepancy(SAMMD),which compares the joint distributions of features and spatial locations across domains.Based on the SAMMD criterion,a deep neural network,referred to as the spatial-associated domain adaptation network,is devised to learn cross-domain but mineralization-indicative features for building prospectivity model that is transferable to deep zones.A case study of the world-class Sanshandao gold deposit,in eastern China,was carried out to validate the effectiveness of the proposed methods.The results show that compared with other leading MPM methods and other domain adaption variants,the proposed method has superior prediction accuracy and targeting efficiency,demonstrating the effectiveness and robustness of the proposed method in targeting deep-seated orebodies in areas with different metallogenic mechanisms and no labeled data. 展开更多
关键词 Mineral prospectivity modeling domain adaptation spatial factor feature dissimilarity kernel learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部