The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to av...The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.展开更多
Evaluating actual crop evapotranspiration(ET) variations and their determining factors under changing climates is crucial for agricultural irrigation management and crop productivity improvement in nonhumid regions.Th...Evaluating actual crop evapotranspiration(ET) variations and their determining factors under changing climates is crucial for agricultural irrigation management and crop productivity improvement in nonhumid regions.This study analyzed the spatiotemporal characteristics and detected the determining factors of ETfor winter wheat and summer maize rotation system from 2000 to 2017 in the North China Plain(NCP),by combining the FAO-56 dual crop coefficient approach with remotely sensed vegetation indices(VIs).The results indicated that daily air temperature increased in varying degrees while wind speed and sunshine hours decreased slightly during the growing season of winter wheat and summer maize over the study period.The trends of relative humidity and effective precipitation varied in crop growing seasons.Based on the validated relationship of dual crop coefficients and VIs,the estimated multi-year average ETof winter wheat(370.29±31.28 mm) was much higher than summer maize(281.85±20.14 mm),and the rotation cycle was 652.43±27.67 mm.Annual ETof winter wheat and the rotation cycle increased by 2.96 mm aand 1,77 mm a,respectively.However,the ETof summer maize decreased with distinct spatial variation.Spatially,winter wheat ETincreased significantly in the northeast NCP,covering the Beijing-Tianiin-Hebei areas.Meanwhile,significant increases in summer maize ETwere detected in the southwest NCP.The sensitivity and contribution analysis showed that ETof winter wheat and summer maize was positively sensitive to temperature,wind speed,and sunshine hours while negatively to relative humidity.Moreover,wind speed and sunshine hours contributed most to changes in ET(around 20%-40%).展开更多
Reclaimed water was successfully used to recover the dry Chaobai River in Northern China, but groundwater may be polluted. To ensure groundwater protection, it is therefore critical to identify the governing factors o...Reclaimed water was successfully used to recover the dry Chaobai River in Northern China, but groundwater may be polluted. To ensure groundwater protection, it is therefore critical to identify the governing factors of groundwater chemistry. Samples of reclaimed water, river and groundwater were collected monthly at Chaobai River from January to September in 2010. Fifteen water parameters were analyzed. Two kinds of reclaimed water were different in type (Na-Ca-Mg-Cl-HCO3 or Na-Ca-Cl-HCO3 ) and concentration of nitrogen. The ionic concentration and type in river were similar to reclaimed water. Some shallow wells near the river bed had the same type (Na-Ca-Mg-Cl-HCO3 ) and high concentration as reclaimed water, but others were consistent with the deep wells (Ca-Mg-HCO3 ). Using cluster analysis, the 9 months were divided into two periods (dry and wet seasons), and all samples were grouped into several spatial clusters, indicating different controlling mechanisms. Principal component analysis and conventional ionic plots showed that calcium, magnesium and bicarbonate were controlled by water-rock interaction in all deep and some shallow wells. This included the dissolution of calcite and carbonate weathering. Sodium, potassium, chloride and sulfate in river and some shallow wells recharged by river were governed by evaporation crystallization and mixing of reclaimed water. But groundwater chemistry was not controlled by precipitation. During the infiltration of reclaimed water, cation exchange took place between (sodium, potassium) and (calcium, magnesium). Nitrification and denitrification both happened in most shallow groundwater, but only denitrification in deep groundwater.展开更多
Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. I...Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to:(a) understand pollutant exchange between surface water and groundwater,(b) quantify nutrient loadings, and(c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat(Triticum aestivum L.) and maize(Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River(up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface(up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless,both nitrogen species were only detected at low concentrations in shallow groundwater,averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.展开更多
Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collecte...Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collected at the Huai River in the Chaobai River basin in 2010. The water chemistry and isotopic compositions of the samples were analyzed in the laboratory. The reclaimed water had stable compositions of water chemistry and isotopes, and the Na. Ca-HCO3. C1 water type. The water chemistry of the river water was consistent with that of the reclaimed water. A June peak of total nitrogen was the prominent characteristic in the shallow groundwater, which also had the Na. Ca-HCO3. C1 water type. However, the water chemistry and isotopes in most of the deep groundwater remained stable, and the water type was Ca-Mg-HCO3. The amount of reclaimed water recharging the groundwater was about 2.5 - 107 m^3/yr. All of the shallow groundwater was impacted by the reclaimed water, with the mixing proportion of reclaimed water ranging from 42% to 80 % in the dry season and from 20% to 86% in the wet season. Only one deep well, with proportions of 67% (dry season) and 28% (wet season), was impacted. TDS, EC, and major ions (Na, K, C1, NHn-N, NO2-N, and NO3-N) were increased in the impacted wells.展开更多
基金supported by the State Basic Research Development Program(973 Program)of China[no.2010CB428805]the Beijing Important Scientific and Technological Program[DO7050601510703]
文摘The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28060200)the National Science Fund for Excellent Young Scholars (42122003)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20040301)the Youth Innovation Promotion Association,CAS (Y202016)。
文摘Evaluating actual crop evapotranspiration(ET) variations and their determining factors under changing climates is crucial for agricultural irrigation management and crop productivity improvement in nonhumid regions.This study analyzed the spatiotemporal characteristics and detected the determining factors of ETfor winter wheat and summer maize rotation system from 2000 to 2017 in the North China Plain(NCP),by combining the FAO-56 dual crop coefficient approach with remotely sensed vegetation indices(VIs).The results indicated that daily air temperature increased in varying degrees while wind speed and sunshine hours decreased slightly during the growing season of winter wheat and summer maize over the study period.The trends of relative humidity and effective precipitation varied in crop growing seasons.Based on the validated relationship of dual crop coefficients and VIs,the estimated multi-year average ETof winter wheat(370.29±31.28 mm) was much higher than summer maize(281.85±20.14 mm),and the rotation cycle was 652.43±27.67 mm.Annual ETof winter wheat and the rotation cycle increased by 2.96 mm aand 1,77 mm a,respectively.However,the ETof summer maize decreased with distinct spatial variation.Spatially,winter wheat ETincreased significantly in the northeast NCP,covering the Beijing-Tianiin-Hebei areas.Meanwhile,significant increases in summer maize ETwere detected in the southwest NCP.The sensitivity and contribution analysis showed that ETof winter wheat and summer maize was positively sensitive to temperature,wind speed,and sunshine hours while negatively to relative humidity.Moreover,wind speed and sunshine hours contributed most to changes in ET(around 20%-40%).
基金supported by the National Basic Research Program (973) of China (No. 2010CB428805)the Beijing Important Scientific and Technological Program (No. DO7050601510703)
文摘Reclaimed water was successfully used to recover the dry Chaobai River in Northern China, but groundwater may be polluted. To ensure groundwater protection, it is therefore critical to identify the governing factors of groundwater chemistry. Samples of reclaimed water, river and groundwater were collected monthly at Chaobai River from January to September in 2010. Fifteen water parameters were analyzed. Two kinds of reclaimed water were different in type (Na-Ca-Mg-Cl-HCO3 or Na-Ca-Cl-HCO3 ) and concentration of nitrogen. The ionic concentration and type in river were similar to reclaimed water. Some shallow wells near the river bed had the same type (Na-Ca-Mg-Cl-HCO3 ) and high concentration as reclaimed water, but others were consistent with the deep wells (Ca-Mg-HCO3 ). Using cluster analysis, the 9 months were divided into two periods (dry and wet seasons), and all samples were grouped into several spatial clusters, indicating different controlling mechanisms. Principal component analysis and conventional ionic plots showed that calcium, magnesium and bicarbonate were controlled by water-rock interaction in all deep and some shallow wells. This included the dissolution of calcite and carbonate weathering. Sodium, potassium, chloride and sulfate in river and some shallow wells recharged by river were governed by evaporation crystallization and mixing of reclaimed water. But groundwater chemistry was not controlled by precipitation. During the infiltration of reclaimed water, cation exchange took place between (sodium, potassium) and (calcium, magnesium). Nitrification and denitrification both happened in most shallow groundwater, but only denitrification in deep groundwater.
基金the Sino-Danish Centre for Education and Research, and the Technical University of Denmark for funding this project
文摘Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to:(a) understand pollutant exchange between surface water and groundwater,(b) quantify nutrient loadings, and(c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat(Triticum aestivum L.) and maize(Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River(up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface(up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless,both nitrogen species were only detected at low concentrations in shallow groundwater,averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.
文摘Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collected at the Huai River in the Chaobai River basin in 2010. The water chemistry and isotopic compositions of the samples were analyzed in the laboratory. The reclaimed water had stable compositions of water chemistry and isotopes, and the Na. Ca-HCO3. C1 water type. The water chemistry of the river water was consistent with that of the reclaimed water. A June peak of total nitrogen was the prominent characteristic in the shallow groundwater, which also had the Na. Ca-HCO3. C1 water type. However, the water chemistry and isotopes in most of the deep groundwater remained stable, and the water type was Ca-Mg-HCO3. The amount of reclaimed water recharging the groundwater was about 2.5 - 107 m^3/yr. All of the shallow groundwater was impacted by the reclaimed water, with the mixing proportion of reclaimed water ranging from 42% to 80 % in the dry season and from 20% to 86% in the wet season. Only one deep well, with proportions of 67% (dry season) and 28% (wet season), was impacted. TDS, EC, and major ions (Na, K, C1, NHn-N, NO2-N, and NO3-N) were increased in the impacted wells.