Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication proce...Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication processing and storage.Here,we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states.The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects,and the helicity-independent photocurrent that is attributed to linear photogalvanic effect.Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.展开更多
基金We thank Prof.J.B.Qi for helpful discussions and are grateful for financial support from the National Natural Science Foundation of China(Grant Nos.11804387,11802339,11805276,11902358,61805282,and 61801498)the Scientific Researches Foundation of National University of Defense Technology(Grant Nos.ZK18-03-22,ZK18-01-03 and ZK18-03-36).
文摘Helicity-dependent ultrafast spin current generated by circularly polarized photons in topological materials holds the crux to many technological improvements,such as quantum communications,on-chip communication processing and storage.Here,we present the manipulation of helicity-dependent terahertz emission generated in a nodal line semimetal candidate Mg3Bi2 by using photon polarization states.The terahertz emission is mainly ascribed to the helicity-dependent photocurrent that is originated from circular photogalvanic effects,and the helicity-independent photocurrent that is attributed to linear photogalvanic effect.Our work will inspire more explorations into novel nodal line semimetals and open up new opportunities for developing ultrafast optoelectronics in the topological system.