期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Fractal Contact Model in Dynamic Performance Analysis of Gas Face Seals 被引量:3
1
作者 Song-Tao Hu Wei-Feng Huang +1 位作者 xiang-feng liu Yu-Ming Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期137-147,共11页
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th... Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals. 展开更多
关键词 Fractal theory Asperity contact Gas face seal Dynamic performance
下载PDF
Effects of doping Fe cations on crystal structure and thermal expansion property of Yb_2Mo_3O_(12)
2
作者 Ying-Zhi Cheng Xiu-Yu Sun +3 位作者 Xiao-Ling Xiao xiang-feng liu Li Xue Zhong-Bo Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第7期1600-1606,共7页
Crystal structures and thermal expansion properties of Yb2-xFexMo3O12(x=0.0,0.6,1.0,1.1,1.4) solid solutions have been studied by X-ray powder diffraction(XRPD) at different temperatures.Rietveld analysis of the X... Crystal structures and thermal expansion properties of Yb2-xFexMo3O12(x=0.0,0.6,1.0,1.1,1.4) solid solutions have been studied by X-ray powder diffraction(XRPD) at different temperatures.Rietveld analysis of the XRPD data shows that Yb2-xFexMo3O12 solid solutions adopt orthorhombic structure and have variable thermal expansion coefficients controlled by the ratio of Yb^3+ to Fe^3+.Yb2Mo3O12 shows anisotropic negative thermal expansion property,induced by the reductions in average Yb-O-Mo angle and average apparent Mo2-O bond length with increasing temperatures.As more Yb^3+ substituted by Fe^3+,the linear thermal expansion coefficients of Yb2-xFexMo3O12 increase from negative to positive.A near-zero thermal expansion coefficient of 0.55×10^-6K^-1 for Yb0.6Fe1.4Mo3O12 is observed in the temperature range of 573-873 K. 展开更多
关键词 Negative thermal expansion Crystal structure X-ray diffraction Rietveld method Molybdate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部