This study details an astrometric observation campaign of the Near-Earth Asteroid 1998 HH49,conducted with the aim of refining our understanding of its physical characteristics.Utilizing the 50 cm telescope located at...This study details an astrometric observation campaign of the Near-Earth Asteroid 1998 HH49,conducted with the aim of refining our understanding of its physical characteristics.Utilizing the 50 cm telescope located at the Wumingshan Mountain in Daocheng,Sichuan,images were obtained over four nights,from 2023 October 19 to October 22.These observations were processed using Astrometrica software,facilitating the precise determination of the asteroid's position.The observational results were compared with the ephemerides from three distinct sources to verify accuracy:the Jet Propulsion Laboratory(JPL)Horizons System,the Institut de Mécanique Céleste et de Calcul deséphémérides(IMCCE)Miriade,and the Near-Earth Objects Dynamic Site(NEODyS-2).When compared with the JPL ephemeris,a mean observed-minus-calculated(O-C)result of 0.″07 in the R.A.direction and-0.″35 in the decl.direction was yielded.Furthermore,the comparison with the IMCCE ephemeris yielded mean O-C results of 0.″08 in the R.A.direction and-0.″06 in the decl.direction.The comparison with the NEODyS-2 ephemeris yielded the mean O-C results of 0.″06 in R.A.and-0.″49 in decl.direction.The study's findings demonstrate a general consistency between the observed data and the ephemeris predictions,with minor discrepancies observed across the data sets.Notably,both the JPL and NEODyS-2 ephemerides show that the residuals in the decl.direction exceed those in the R.A.direction.The disparities may result from atmospheric differential color refraction,ephemeris discrepancies,observational errors,and other factors.Additionally,it is worth noting that further investigation is required due to the potential influence of additional factors.Overall,the Daocheng 50 cm Telescope exhibits the ability to conduct high-precision positional measurements.展开更多
基金funded by the National Key R&D Program of China(grant No.2022YFE0116800)the National Natural Science Foundation of China(NSFC,grant No.12173085)the West Light Foundation of The Chinese Academy of Sciences Key scientific research projects of colleges and universities in Henan Province(grant No.23B16001)。
文摘This study details an astrometric observation campaign of the Near-Earth Asteroid 1998 HH49,conducted with the aim of refining our understanding of its physical characteristics.Utilizing the 50 cm telescope located at the Wumingshan Mountain in Daocheng,Sichuan,images were obtained over four nights,from 2023 October 19 to October 22.These observations were processed using Astrometrica software,facilitating the precise determination of the asteroid's position.The observational results were compared with the ephemerides from three distinct sources to verify accuracy:the Jet Propulsion Laboratory(JPL)Horizons System,the Institut de Mécanique Céleste et de Calcul deséphémérides(IMCCE)Miriade,and the Near-Earth Objects Dynamic Site(NEODyS-2).When compared with the JPL ephemeris,a mean observed-minus-calculated(O-C)result of 0.″07 in the R.A.direction and-0.″35 in the decl.direction was yielded.Furthermore,the comparison with the IMCCE ephemeris yielded mean O-C results of 0.″08 in the R.A.direction and-0.″06 in the decl.direction.The comparison with the NEODyS-2 ephemeris yielded the mean O-C results of 0.″06 in R.A.and-0.″49 in decl.direction.The study's findings demonstrate a general consistency between the observed data and the ephemeris predictions,with minor discrepancies observed across the data sets.Notably,both the JPL and NEODyS-2 ephemerides show that the residuals in the decl.direction exceed those in the R.A.direction.The disparities may result from atmospheric differential color refraction,ephemeris discrepancies,observational errors,and other factors.Additionally,it is worth noting that further investigation is required due to the potential influence of additional factors.Overall,the Daocheng 50 cm Telescope exhibits the ability to conduct high-precision positional measurements.