Carboxymethyl chitosan–hemicellulose resin(CMCH) was synthesized by thermal cross-linking process and characterized by FTIR, TGA, and SEM. Subsequently, the adsorption properties of CMCH toward Ni(Ⅱ),Cd(Ⅱ), C...Carboxymethyl chitosan–hemicellulose resin(CMCH) was synthesized by thermal cross-linking process and characterized by FTIR, TGA, and SEM. Subsequently, the adsorption properties of CMCH toward Ni(Ⅱ),Cd(Ⅱ), Cu(Ⅱ), Hg(Ⅱ), Mn(Ⅶ) and Cr(Ⅵ) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time and the initial concentration of the metal ions were investigated.The results showed that all adsorption processes fit the pseudo-second-order model and Langmuir isotherm equation. Significantly, the regeneration experiments showed CMCH can be used as a potentially recyclable and effective adsorbent for the removal and recovery of metal ions from wastewater.展开更多
基金supported by the National Natural Science Foundation of China(No.21403091)the Natural Science Foundation of Jiangsu Province,China(No.BK20130486)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1601066B)a Project Funded by Jiangsu University for Senior Intellectuals(Nos14JDG128 and 12JDG093)supporting this project under the innovation/entrepreneurship program (Surencaiban[2015]26).
文摘Carboxymethyl chitosan–hemicellulose resin(CMCH) was synthesized by thermal cross-linking process and characterized by FTIR, TGA, and SEM. Subsequently, the adsorption properties of CMCH toward Ni(Ⅱ),Cd(Ⅱ), Cu(Ⅱ), Hg(Ⅱ), Mn(Ⅶ) and Cr(Ⅵ) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time and the initial concentration of the metal ions were investigated.The results showed that all adsorption processes fit the pseudo-second-order model and Langmuir isotherm equation. Significantly, the regeneration experiments showed CMCH can be used as a potentially recyclable and effective adsorbent for the removal and recovery of metal ions from wastewater.