The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical ...The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical equation of motion. By establishing the physical model of the harmonic emission in the inhomogeneous field, we discuss the related characters of the multiple rescatterings process in the harmonic generation process. It shows that the second rescattering rather than the first rescattering tends to determine the harmonic cutoff energy when the inhomogeneous parameter is larger than 0.0055. Additionally, with the classica/simulation, the underlying physical mechanism of the continuum-continuum harmonics is also revealed. Moreover, this work may provide new physical insight into the harmonic generation in an inhomogeneous field, and is beneficial to further extract the harnaonic emission from molecular systems.展开更多
The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and othe...The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpendicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an experimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the fourbody model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.展开更多
Three-Coulomb-wave method is employed to treat the process of (e, 2e) simultaneous ion- ization and excitation to the n=2 state of helium, with radial and angular correlated wave-function of He target. The triple di...Three-Coulomb-wave method is employed to treat the process of (e, 2e) simultaneous ion- ization and excitation to the n=2 state of helium, with radial and angular correlated wave-function of He target. The triple differential cross sections are calculated and analyzed in very asymmetric coplanar geometry at incident energies of 5.50, 1.50 and 0.57 keV. Results are compared with the absolute measurements and the theoretical first and second Born approximation. The present triply differential cross section (TDCS) is found to be in good agreement with experimental data qualitatively. The distinguishing feature noted in TDCS structure is the presence of intense recoil peak that for certain parameters is even larger than the binary peak, an unusual feature for the single-ionization process at high and intermediate energies.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404204,11274215,and 11504221)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.2015021023)+1 种基金Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,ChinaInnovation Project for Postgraduates of Shanxi Province,China(Grant No.2017BY085)
文摘The effect of multiple rescattering processes on the harmonic emission from He atom in a spatially inhomogeneous field is discussed by solving the one-dimensional time-dependent Schrtdinger equation and the classical equation of motion. By establishing the physical model of the harmonic emission in the inhomogeneous field, we discuss the related characters of the multiple rescatterings process in the harmonic generation process. It shows that the second rescattering rather than the first rescattering tends to determine the harmonic cutoff energy when the inhomogeneous parameter is larger than 0.0055. Additionally, with the classica/simulation, the underlying physical mechanism of the continuum-continuum harmonics is also revealed. Moreover, this work may provide new physical insight into the harmonic generation in an inhomogeneous field, and is beneficial to further extract the harnaonic emission from molecular systems.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11274215), the Natural Science Foundation of Shanxi Province, China (No.20051008 and No.2010011009), and the Technology Project of Shanxi Provincial Education Department, China (No.20111011).
文摘The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpendicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an experimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the fourbody model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.
文摘Three-Coulomb-wave method is employed to treat the process of (e, 2e) simultaneous ion- ization and excitation to the n=2 state of helium, with radial and angular correlated wave-function of He target. The triple differential cross sections are calculated and analyzed in very asymmetric coplanar geometry at incident energies of 5.50, 1.50 and 0.57 keV. Results are compared with the absolute measurements and the theoretical first and second Born approximation. The present triply differential cross section (TDCS) is found to be in good agreement with experimental data qualitatively. The distinguishing feature noted in TDCS structure is the presence of intense recoil peak that for certain parameters is even larger than the binary peak, an unusual feature for the single-ionization process at high and intermediate energies.