Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system ...Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system was developed for noninvasive and in vivo measurement of NADH fluorescence and its real-time dynamical changes in human skin tissue.The real-time dynamical changes of NADH fluorescence were analyzed with the changes of skin blood flow measured by laser speckle contrast imaging(LSCI)experiments simultaneously with FMSFPORH measurements,which suggests that the dynamical changes of NADH fluorescence would be mainly correlated with the intrinsic changes of NADH level in the skin tissue.In addition,Monte Carlo simulations were applied to understand the impact of optical property changes on the dynamical changes of NADH fluorescence during the PORH process,which further supports that the dynamical changes of NADH fluorescence measured in our system would be intrinsic changes of NADH level in the skin tissue.展开更多
Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottl...Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottlenecks,particularly that arising from the instability under ambient condition.The studies of degradation mechanisms and protecting strategies for overcoming the ambient instability of 2D materials have attracted extensive research attentions,both experimentally and theoretically.This review attempts to provide an overview on the recent progress of the encapsulation strategies for 2D materials.The en-capsulation strategies of mechanical transfer,polymer capping,atomic layer deposition,in-situ oxidation,and surface functionalization are systematically discussed for improving the ambient stability of 2D mate-rials.In addition,the current advances in air-stable and high-performance 2D materials-based field effect transistors(FETs)and photodetectors assisted by the encapsulation strategies are outlined.Furthermore,the future directions of encapsulation techniques of 2D materials for FETs and photodetectors applications are suggested.展开更多
As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth ...As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition(CVD)method.Due to the non-centrosymmetric structure,the grown GaSe nanoflakes exhibits excellent second harmonic generation(SHG).In addition,the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation,with a rise time of 6 ms and decay time of 10 ms.These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and(opto)-electronics.展开更多
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2020CFB380)the Educational Commission of Hubei Province of China(Grant No.Q20191506).
文摘Reduced nicotinamide adenine dinucleotide(NADH)plays a crucial role in many biochemical reactions in human metabolism.In this work,a flow-mediated skin fluorescence(FMSF)-postocclusion reactive hyperaemia(PORH)system was developed for noninvasive and in vivo measurement of NADH fluorescence and its real-time dynamical changes in human skin tissue.The real-time dynamical changes of NADH fluorescence were analyzed with the changes of skin blood flow measured by laser speckle contrast imaging(LSCI)experiments simultaneously with FMSFPORH measurements,which suggests that the dynamical changes of NADH fluorescence would be mainly correlated with the intrinsic changes of NADH level in the skin tissue.In addition,Monte Carlo simulations were applied to understand the impact of optical property changes on the dynamical changes of NADH fluorescence during the PORH process,which further supports that the dynamical changes of NADH fluorescence measured in our system would be intrinsic changes of NADH level in the skin tissue.
基金supported by the National Natural Science Foundation of China (Nos. 21825103, 51902227 and 11574241)the Open Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, China (No. P2020-021)
文摘Two-dimensional(2D)layered materials provide a promising alternative solution for overcoming the scal-ing limits in conventional Si-based devices.However,practical applications of 2D materials are facing crucial bottlenecks,particularly that arising from the instability under ambient condition.The studies of degradation mechanisms and protecting strategies for overcoming the ambient instability of 2D materials have attracted extensive research attentions,both experimentally and theoretically.This review attempts to provide an overview on the recent progress of the encapsulation strategies for 2D materials.The en-capsulation strategies of mechanical transfer,polymer capping,atomic layer deposition,in-situ oxidation,and surface functionalization are systematically discussed for improving the ambient stability of 2D mate-rials.In addition,the current advances in air-stable and high-performance 2D materials-based field effect transistors(FETs)and photodetectors assisted by the encapsulation strategies are outlined.Furthermore,the future directions of encapsulation techniques of 2D materials for FETs and photodetectors applications are suggested.
基金supported by the National Natural Science Foundation of China(Grant Nos.51902227 and 11574241)the Open Project of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China(Grant No.P2020-021).
文摘As an emerging groupⅢ–Ⅵsemiconductor two-dimensional(2D)material,gallium selenide(GaSe)has attracted much attention due to its excellent optical and electrical properties.In this work,high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition(CVD)method.Due to the non-centrosymmetric structure,the grown GaSe nanoflakes exhibits excellent second harmonic generation(SHG).In addition,the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation,with a rise time of 6 ms and decay time of 10 ms.These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and(opto)-electronics.