期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Injury of cortical neurons is caused by the advanced glycation end products-mediated pathway 被引量:2
1
作者 Ying Xing Xu Zhang +3 位作者 xiangfu song Zhongwen Lv Lingling Hou Fei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期909-915,共7页
Advanced glycation end products lead to cell apoptosis, and cause cell death by increasing endoplasmic reticulum stress. Advanced glycation end products alone may also directly cause damage to tissues and cells, but t... Advanced glycation end products lead to cell apoptosis, and cause cell death by increasing endoplasmic reticulum stress. Advanced glycation end products alone may also directly cause damage to tissues and cells, but the precise mechanism remains unknown. This study used primary cultures of rat cerebral cortex neurons, and treated cells with different concentrations of glycation end products (50, 100, 200, 400 mg/L), and with an antibody for the receptor of advanced glycation end products before and after treatment with advanced glycation end products. The results showed that with increasing concentrations of glycation end products, free radical content increased in neurons, and the number of apoptotic cells increased in a dose-dependent manner. Before and after treatment of advanced glycation end products, the addition of the antibody against advanced glycation end-products markedly reduced hydroxyl free radicals, malondialdehyde levels, and inhibited cell apoptosis. This result indicated that the antibody for receptor of advanced glycation end-products in neurons from the rat cerebral cortex can reduce glycation end product-induced oxidative stress damage by suppressing glycation end product receptors. Overall, our study confirms that the advanced glycation end products-advanced glycation end products receptor pathway may be the main signaling pathway leading to neuronal damage. 展开更多
关键词 neural regeneration brain injury advanced glycation end products advanced glycation endproducts receptor ANTIBODY PATHWAY cortical neurons oxidative stress oxidative stress injury apoptosis NEUROREGENERATION
下载PDF
Effects of Aquatic Vegetation on Fish Assemblages in a Freshwater River of Taihu Lake Basin, East China 被引量:2
2
作者 Jinqing Wang xiangfu song +1 位作者 Guoyan Zou Wenzong Zhou 《Journal of Water Resource and Protection》 2013年第1期37-45,共9页
Distribution characteristics of fish assemblages and environmental variation in emerged plant, floating-leaved plant and blank habitats were studied. Emergent plant habitat supported the greatest fish biomass, density... Distribution characteristics of fish assemblages and environmental variation in emerged plant, floating-leaved plant and blank habitats were studied. Emergent plant habitat supported the greatest fish biomass, density and body size, followed by floating-leaved plant habitat, and those of blank habitat was the lowest. Transparency of emergent plant habitat decreased during the period, but of blank habitat increased. Species number of dominant fish of emergent plant habitat compared to the others decreased from four species, i.e., Hemicculter leuciclus, Pseudobrama simoni, Carassius auratus and Ophicephalus argus in May to the single one, C. auratus in September. Those of blank habitat increased from two species, H. leuciclus and Pseudorasbora parva to four species, H. leuciclus, C. auratus, P. parva and O. argus. This result suggested that emergent plant with excessively high density could worsen habitat physical and chemical conditions, resulted in the fish’s emigration to unvegetated area. Those of floating-leaved plant habitat from two species, Cultrichthys erythropterus and P. simoni, changed into four species, C. erythropterus, P. simoni, H. leuciclus and P. parva. The increasing structure complexity and biomass of floating-leaved macrophyte promoted the increase of dominant fish species number with seasonal change. C. auratus, C. erythropterus and H. leuciclus displayed special preferences on emergent plant, floating-leaved plant and blank habitats respectively. Fish’s special habitat preference was determined by plant physical morphology, habitat characteristics and fish breeding habits. 展开更多
关键词 MACROPHYTE Fish ASSEMBLAGES Emerged PLANT Floating-Leaved PLANT pH TRANSPARENCY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部