期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
妇产科手术后盆腹腔粘连预防中国指南(2023年版) 被引量:6
1
作者 朱兰 郎景和 +26 位作者 任常 张越伦 陈敦金 陈龙 陈亦乐 崔满华 狄文 段华 郝敏 黄向华 李佩玲 冒韵东 漆洪波 史惠蓉 宋磊 王沂峰 徐开红 许学先 薛翔 杨慧霞 姚书忠 张国楠 章汉旺 张淑兰 周慧梅 周应芳 朱卫国 《中华妇产科杂志》 CAS CSCD 北大核心 2023年第3期161-169,共9页
粘连是最常见的手术并发症,术后粘连在妇产科手术后也较为常见,术后粘连可能引起病理性的并发症,严重者甚至可危及生命。为了在临床上更好地预防粘连,在2015年的《预防妇产科手术后盆腹腔粘连的中国专家共识》基础上,根据新的研究结果,... 粘连是最常见的手术并发症,术后粘连在妇产科手术后也较为常见,术后粘连可能引起病理性的并发症,严重者甚至可危及生命。为了在临床上更好地预防粘连,在2015年的《预防妇产科手术后盆腹腔粘连的中国专家共识》基础上,根据新的研究结果,专家组遴选了与临床密切相关的12项问题进行了文献检索,并根据国际通用的标准进行了严谨评级和严格推荐。在兼顾严肃性、严谨性、严格性、实用性、科学性、权威性、政策性和安全性的前提下,最终制定了本指南,以规范临床工作,指导选择防粘连材料,加强防粘连意识,最终使患者获益。 展开更多
关键词 盆腹腔粘连 预防粘连 妇产科手术后 术后粘连 文献检索 中国专家共识 病理性 严谨性
原文传递
Analytical redundancy of variable cycle engine based on variable-weights neural network
2
作者 Zihao ZHANG xianghua huang Tianhong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期84-94,共11页
In this paper, variable-weights neural network is proposed to construct variable cycle engine’s analytical redundancy, when all control variables and environmental variables are changing simultaneously, also accompan... In this paper, variable-weights neural network is proposed to construct variable cycle engine’s analytical redundancy, when all control variables and environmental variables are changing simultaneously, also accompanied with the whole engine’s degradation. In another word,variable-weights neural network is proposed to solve a multi-variable, strongly nonlinear, dynamic and time-varying problem. By making weights a function of input, variable-weights neural network’s nonlinear expressive capability is increased dramatically at the same time of decreasing the number of parameters. Results demonstrate that although variable-weights neural network and other algorithms excel in different analytical redundancy tasks, due to the fact that variableweights neural network’s calculation time is less than one fifth of other algorithms, the calculation efficiency of variable-weights neural network is five times more than other algorithms. Variableweights neural network not only provides critical variable-weights thought that could be applied in almost all machine learning methods, but also blazes a new way to apply deep learning methods to aeroengines. 展开更多
关键词 Analytical redundancy DEGRADATION Multiple variables Neural networks Variable cycle engine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部