期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimized design and field experiment of a staggered vibrating subsoiler for conservation tillage 被引量:3
1
作者 Yunxia Wang Abdalla N Osman +3 位作者 Dongxing Zhang Li Yang Tao Cui xiangjun zhong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期59-65,共7页
Soil compaction is a common problem facing conservation fields that restricts crop root growth and causes yield decrease.Subsoil techniques have been developed to break up the compaction layer.However,subsoil implemen... Soil compaction is a common problem facing conservation fields that restricts crop root growth and causes yield decrease.Subsoil techniques have been developed to break up the compaction layer.However,subsoil implement requires large draft power that hampered the development of subsoil techniques for most of developing countries due to lack of large scale tractors.Aiming to optimize the penetration resistance of the subsoiler and create a good working environment for the operators,a staggered vibrating subsoiler was developed.A new staggered vibrating mechanism was designed to generate the staggered vibration of the shanks meanwhile the V-shape shanks arrangement was adopted to keep relative balance for the subsoiler.In order to obtain optimum working parameters of the vibration frequency and forward speed,the trajectory of shanks was simulated by using the MATLAB software.The forward speed of 2-3 km/h with vibration frequency of 12 Hz was recommended to acquire an effective decrease in draft force.Field performance of this subsoiler was evaluated in terms of the draft force,power requirement and tractor wheel slippage.By comparing the two operation modes,staggered vibrating(SV)and rigid(NV)of shanks,the decrease ratios of draft force for SV were determined by 16.97%,12.12%and 9.02%at forward speeds of 2.2 km/h,2.6 km/h and 3.1 km/h,respectively.This is better than the research for the 1SZ-460 vibratory subsoiler that was decreased by 9.09%in draft force.The power requirement for SV was not significantly greater than that for NV.The obviously decreased wheel slippage was observed for SV by decrease of 12.47%,17.96%and 21.79%at forward speeds of 2.2 km/h,2.6 km/h and 3.1 km/h,respectively.In conclusion,the staggered vibrating subsoiler presents preferable working performance and is recommended to be applied in subsoil tillage process for developing countries. 展开更多
关键词 vibrating subsoiler staggered vibrating mechanism V-shape arrangement field experiment
原文传递
Remote monitoring system for maize seeding parameters based on Android and wireless communication 被引量:1
2
作者 Chunji Xie Dongxing Zhang +5 位作者 Li Yang Tao Cui xiangjun zhong Yuhuan Li Youqiang Ding Zhengliang Ding 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期159-165,共7页
Most traditional maize seeding parameter monitoring devices use wired data transmission.The problems include wiring troubles,short transmission distances.And human-computer interaction display terminals are unique and... Most traditional maize seeding parameter monitoring devices use wired data transmission.The problems include wiring troubles,short transmission distances.And human-computer interaction display terminals are unique and usually customized rather than universal.A remote monitoring system for maize seeding parameters based on Android and wireless communication was developed in this study.The system used a single-chip microcomputer as the main controller and an infrared photoelectric sensor to capture seed information.The Android terminal application was used to set and display the seeder’s seed parameter information and monitor it.The Air202 communication module enabled remote data transmission,while the Global Positioning System(GPS)monitored the speed of the planter.By establishing a message queue telemetry transmission(MQTT)cloud served as a data freight station,data reception,storage and forwarding can be performed.Seeding parameters can generate Excel spreadsheets in real-time for easy data processing and storage.In order to verify the reliability of the system,the seeding parameter monitoring comparison test and the multi-terminal remote monitoring test were designed.The results of the seeding parameter monitoring comparison test showed that the monitoring system of this study had higher monitoring accuracy.The maximum average relative error of seeding parameter monitoring was 0.4%,which had high monitoring accuracy.The multi-terminal remote monitoring test showed that the monitoring system of this research can adapt many types of Android terminals,realize the wireless connection,and realize remote synchronous monitoring at different distances.This study provides a reference for intelligent remote monitoring and intelligent agriculture on unmanned farms. 展开更多
关键词 remote monitoring system maize seeding parameters Android and wireless communication remote synchronous monitoring intelligent agriculture
原文传递
Novel low-cost control system for large high-speed corn precision planters
3
作者 Youqiang Ding Li Yang +5 位作者 Dongxing Zhang Tao Cui Yuhuan Li xiangjun zhong Chunji Xie Zhengliang Ding 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第2期151-158,共8页
Large high-speed corn precision planters can significantly improve seeding efficiency,but at present,there is no mature control technology in China.This study proposed a novel low-cost control system for large high-sp... Large high-speed corn precision planters can significantly improve seeding efficiency,but at present,there is no mature control technology in China.This study proposed a novel low-cost control system for large high-speed corn precision planters based on multiple technologies such as embedded systems,controller area network(CAN),global positioning system(GPS),and Android development technology.The developed control system provided excellent expansion capabilities of more than 40 planter rows.Functions such as monitoring the planter status,adjusting seed density,calculating planting-area were realized.Field experiments were performed under different GPS frequencies(fGPS),travel speeds,and seed spacings.Results showed that the working area relative error index(REI)and fGPS were negatively correlated,and the planter can achieve 0.84%error under the fGPS of 10 Hz.When the travel speed was 10 km/h or 12 km/h,the average quality index(QI),miss index(MI),and precision index(PI)were superior to 92.84%,5.80%,and 18.57%under each seed spacing,respectively,QI and MI had no significant difference under each seed spacing(p<0.05).For a travel speed of 14 km/h,indexes values reached the worst level at seed spacing of 20 cm,but still met the requirements of Chinese national standards.The total cost of the control system for a 12-row corn precision planter is only 17.07%of similar products from abroad.In summary,the developed control system can achieve preferable performance and costs much less than similar products obtained from abroad,which is suitable for promotion in China or other developing countries. 展开更多
关键词 corn precision planter control system Android CAN bus GPS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部