期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Facile construction of a multilayered interface for a durable lithium‐rich cathode
1
作者 Zhou Xu Yifei Yuan +8 位作者 Qing Tang xiangkun nie Jianwei Li Qing Sun Naixuan Ci Zhenjie Xi Guifang Han Lijie Ci Guanghui Min 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期74-87,共14页
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ... Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries. 展开更多
关键词 lattice oxygen release lithium‐rich manganese‐based oxide cathodes reconstructed multilayer interface spinel phase transition‐metal ion migration
下载PDF
Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal 被引量:7
2
作者 Xiaoyan Xu Yuanyuan Li +6 位作者 Jun Cheng Guangmei Hou xiangkun nie Qing Ai Linna Dai Jinkui Feng Lijie Ci 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期73-78,共6页
High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS... High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles. 展开更多
关键词 COMPOSITE solid ELECTROLYTE NA 3PS4 ALL-SOLID-STATE sodium battery SnS2
下载PDF
锂氧电池中基于自支撑Ag/δ-MnO_(2)纳米花正极的可逆LiOH化学
3
作者 Linna Dai Qing Sun +7 位作者 Yuqing Yao Huanhuan Guo xiangkun nie Jianwei Li Pengchao Si Jingyu Lu Deping Li Lijie Ci 《Science China Materials》 SCIE EI CAS CSCD 2022年第6期1431-1442,共12页
因放电产物对有机电解液具有高攻击性,使得锂-氧电池能量效率低和循环稳定性差的问题一直限制着其实际应用.与典型放电产物过氧化锂相比,氢氧化锂(LiOH)具有更好的化学和电化学稳定性.本文通过在碳纸上原位生长嵌有纳米银的花状二氧化... 因放电产物对有机电解液具有高攻击性,使得锂-氧电池能量效率低和循环稳定性差的问题一直限制着其实际应用.与典型放电产物过氧化锂相比,氢氧化锂(LiOH)具有更好的化学和电化学稳定性.本文通过在碳纸上原位生长嵌有纳米银的花状二氧化锰作为锂-氧电池的正极(Ag/δ-MnO_(2)@CP),并证明了它能催化LiOH的可逆生成和分解.原位拉曼测试和理论计算表明Ag/δ-MnO_(2)催化放电中间体LiO2*与水分子解离的H+反应最终生成LiOH.以Ag/δ-MnO_(2)@CP为正极的锂-氧电池在潮湿氧气环境下表现出更高的比容量和放电平台.在电流密度为200 mA g^(−1)时,锂-氧电池的过电位仅为0.5 V,在500 mA h g^(−1)的限制比容量下可循环867圈.该工作为研究固相催化剂在锂-氧电池中的作用提供了新的思路,并将促进基于LiOH放电产物的锂-氧电池的实际应用. 展开更多
关键词 有机电解液 放电产物 电化学稳定性 能量效率 氢氧化锂 二氧化锰 过电位 自支撑
原文传递
Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-02 batteries 被引量:5
4
作者 Linna Dai Qing Sun +7 位作者 Lina Chen Huanhuan Guo xiangkun nie Jun Cheng Jianguang Guo Jianwei Li Jun Lou Lijie Ci 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2356-2364,共9页
Rechargeable Li-O2 batteries (LOBs) have been receiving intensive attention because of their ultra-high theoretical energy densityclose to the gasoline. Herein, Ag modified urchin-like α-MnO2 (Ag-MnO2) material with ... Rechargeable Li-O2 batteries (LOBs) have been receiving intensive attention because of their ultra-high theoretical energy densityclose to the gasoline. Herein, Ag modified urchin-like α-MnO2 (Ag-MnO2) material with hierarchical porous structure is obtained bya facile one-step hydrothermal method. Ag-MnO2 possesses thick nanowires and presents hierarchical porous structure of mesoporesand macropores. The unique structure can expose more active sites, and provide continuous pathways for O2 and discharge productsas well. The doping of Ag leads to the change of electronic distribution in α-MnO2 (i.e., more oxygen vacancies), which playimportant roles in improving their intrinsic catalytic activity and conductivity. As a result, LOBs with Ag-MnO2 catalysts exhibit loweroverpotential, higher discharge specific capacity and much better cycle stability compared to pure a-MnO2. LOBs with Ag-MnO2catalysts exhibit a superior discharge specific capacity of 13,131 mA·h·g^-1 at a current density of 200 mA·h·g^-1, a good cycle stabilityof 500 cycles at the capacity of 500 mA·h·g^-1. When current density is increased to 400 mA·h·g^-1, LOBs still retain a long lifespan of170 cycles at a limited capacity of 1,000 mA·h·g^-1. 展开更多
关键词 Li-O2 batteries Ag doped urchin-like MnO2 electronic structure cycling stability
原文传递
Fabrication of GO/magnetic graphitic nanocapsule/TiO_2 assemblies as efficient and recyclable photocatalysts 被引量:1
5
作者 Zhenqian Cheng Ding Ding +5 位作者 xiangkun nie Yiting Xu Zhiling Song Ting Fu Zhuo Chen Weihong Tan 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第7期1131-1136,共6页
In this work, we fabricate an efficient and stable photocatalyst system which has superior recyclability even under concentrated acidic conditions. The photocatalyst is prepared by assembling magnetic graphitic nanoca... In this work, we fabricate an efficient and stable photocatalyst system which has superior recyclability even under concentrated acidic conditions. The photocatalyst is prepared by assembling magnetic graphitic nanocapsules, titania(Ti O2) and graphene oxide(GO) into a complex system through π-π stacking and electrostatic interactions. Such catalytic complex demonstrates very high stability. Even after dispersal into a concentrated acidic solution for one month, this photocatalyst could still be recycled and maintain its catalytic activity. With methyl orange as the model molecule, the photocatalyst is demonstrated to rapidly decompose the molecules with very high photocatalytic activity under both concentrated acidic and neutral condition. Moreover, this photocatalyst retains approximately 100 wt% of its original photocatalytic activity even after multiple experimental runs, of magnetic recycling. Finally, using different samples from natural water sources and different dyes, this GO/ magnetic graphitic nanocapsule/Ti O2 system also demonstrates its high efficiency and recyclability for practical application. 展开更多
关键词 光催化剂 氧化石墨 纳米胶囊 TiO2 磁性 循环利用 制造 光催化活性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部