Mycorrhiza helper bacteria(MHB)can promote the formation and functioning of arbuscular mycorrhizal(AM)symbiosis,but their role and application potential in coping with soil-borne diseases are still unclear.A 14-week g...Mycorrhiza helper bacteria(MHB)can promote the formation and functioning of arbuscular mycorrhizal(AM)symbiosis,but their role and application potential in coping with soil-borne diseases are still unclear.A 14-week greenhouse pot experiment was conducted to obtain several actinomycete strains helping AM symbiosis in suppressing the Phytophthora blight of pepper(Capsicum annuum L.),using a soil inoculated with Phytophthora capsici after sterilization.Five Streptomyces strains,including S.pseudogriseolus,S.albogriseolus,S.griseoaurantiacus,S.tricolor,and S.tendae,as well as the AM fungus(Funneliformis caledonium)were tested.The Phytophthora blight severity reached 66%at full productive stage in the uninoculated control,and inoculation of F.caledonium,S.griseoaurantiacus,and S.tricolor alone significantly decreased(P<0.05)it to 47%,40%,and 35%,respectively.Compared to F.caledonium alone,additional inoculation of S.tricolor or S.tendae,which were isolated from the rhizosphere of a healthy individual in an infected field,significantly elevated(P<0.05)root mycorrhizal colonization,root biomass,fruit yield,and total K acquisitions of pepper and further significantly decreased(P<0.05)blight severity.According to the feature of enhancing disease-suppression by AM symbiosis,both S.tricolor and S.tendae were confirmed as MHB strains here.Specifically,S.tendae had a stronger performance in directly accelerating mycorrhization,while S.tricolor was also an antagonist to the pathogenic P.capsici.Furthermore,S.griseoaurantiacus with the independent disease-suppression function was not an MHB strain here.The redundancy analyses demonstrated that when AM fungus was present,root mycorrhizal colonization replaced soil pH becoming the main factor affecting pepper Phytophthora blight.Thus,S.tricolor and S.tendae seemed to have the value of preparation and application in the future to help AM symbiosis against pepper Phytophthora blight.展开更多
Rice fields are a major source of greenhouse gases,such as nitrous oxide (N_(2)O) and methane (CH_(4)).Organic fertilizers may potentially replace inorganic fertilizers to meet the nitrogen requirement for rice growth...Rice fields are a major source of greenhouse gases,such as nitrous oxide (N_(2)O) and methane (CH_(4)).Organic fertilizers may potentially replace inorganic fertilizers to meet the nitrogen requirement for rice growth;however,the simultaneous effects of organic fertilizers on N_(2)O and CH_(4)emissions and crop yield in paddy fields remain poorly understood and quantified.In this study,experimental plots were established in conventional double-cropping paddy fields in the Pearl River Delta,China,including an unfertilized control and five fertilizer treatments with fresh organic fertilizer (FOF),successively composted organic fertilizer (SOF),chemically composted organic fertilizer (COF),COF supplemented with inorganic fertilizer (COIF),and chemical fertilizers (CFs)(TFOF,TSOF,TCOF,TCOIF,and TCF,respectively).Paddy field soils behaved simultaneously as an N_(2)O sink (cumulative N_(2)O emission:-196 to-381 g N ha^(-1)) and as a CH_(4)source (cumulative CH_(4)emission:719 to 2 178 kg ha^(-1)).Compared to CFs,the effects of organic fertilizers on N_(2)O emission were not significant.In contrast,total annual CH_(4)emission increased by 157%,132%,125%,and 37%in TFOF,TCOF,TSOF,and TCOIF,respectively,compared to TCF.In TCOIF,rice yield was maintained,while CH_(4)emission was not significantly increased from the paddy fields characterized by a prolonged flood period.An important next step is to extend these field-based measurements to larger rice cultivation areas to quantify the regional and national-scale impacts on greenhouse gas emissions and to help determine the optimum practice for fertilizer use.展开更多
Ammonia(NH_(3)) volatilization from rice fields contributes to poor air quality and indicates low nitrogen use efficiency. Although organic fertilizers can meet the nitrogen requirement for rice growth, the simultaneo...Ammonia(NH_(3)) volatilization from rice fields contributes to poor air quality and indicates low nitrogen use efficiency. Although organic fertilizers can meet the nitrogen requirement for rice growth, the simultaneous effects of organic fertilizers on NH_(3) volatilization and rice yield in paddy fields are poorly understood and quantified. To address this gap in our knowledge, experimental field plots were established in a conventional double-cropping paddy field in the Pearl River Delta region, southern China. Five fertilizer treatments were used besides the control with no fertilizer: fresh organic fertilizer, successively composted organic fertilizer, chemically composted organic fertilizer, mixture of chemically composted organic fertilizer with inorganic fertilizer, and chemical fertilizer. Ammonia volatilization was measured using a batch-type airflow enclosure method. No significant differences in grain yield were observed among organic and chemical fertilizer treatments. However, compared with chemical fertilizer, chemically composted organic fertilizer and successively composted organic fertilizer significantly decreased total NH_(3) volatilization by 70% and 68%, respectively. The ammonium-nitrogen concentration in field surface water correlated strongly(P < 0.01) and positively with NH_(3) volatilization across fertilization treatments. Our findings demonstrate that chemically composted organic fertilizer can sustain rice yield while reducing NH_(3) volatilization. An important future step is to promote these field measurements to similar rice cultivation areas to quantify the regional-and national-scale impact on air quality and nitrogen deposition in sensitive areas, and to design and implement better fertilizer management practices.展开更多
The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of...The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of a plant-microbe remediation system, contaminated agricultural soils were amended with different dosages of sewage sludge (SS) and cattle manure (CM) in the presence of alfalfa (Medicago sativa L.) and PAHs-degraders (Bacillus sp. and Flavobacterium sp.). The results indicated that the alfalfa mean biomasses varied from 0.56 to 2.23 g/pot in root dry weight and from 1.80 to 4.88 g/pot in shoot dry weight. Low dose amendments, with rates of SS at 0.1% and CM at 1%, had prominent effects on plant growth and soil PAHs degradation. After 60-day incubation, compared with about 5.6% in the control, 25.8% PAHs removal was observed for treatments in the presence of alfalfa and PAHs-degraders; furthermore, when amended with different dosages of SS and CM, the removed PAHs from soils increased by 35.5%--44.9% and 25.5%-42.3%, respectively. In particular, the degradation of high-molecular-weight PAHs was up to 42.4%. Dehydrogenase activities (DH) ranged between 0.41 and 1.83 ~tg triphenylformazan/(g dry soil.hr) and the numbers of PAHs-degrading microbes (PDM) ranged from 1.14x106 to 16.6x106 most-probable-number/g dry soil. Further investigation of the underlying microbial mechanism revealed that both DH and PDM were stimulated by the addition of organic wastes and significantly correlated with the removal ratio of PAHs. In conclusion, the effect of organic waste application on soil PAHs removal to a great extent is dependent on the interactional effect of nutrients and dissolved organic matter in organic waste and soil microorganisms.展开更多
Intercropping,which gains productivity and ecological benefits through plant facilitative interactions,is a practice often associated with sustainable agriculture.In such systems,arbuscular mycorrhizal(AM)fungi and th...Intercropping,which gains productivity and ecological benefits through plant facilitative interactions,is a practice often associated with sustainable agriculture.In such systems,arbuscular mycorrhizal(AM)fungi and the hyphal networks play key roles in plant facilitation by promoting connectivity,mediating interplant transfer of metabolic resources,and managing weeds,pathogens,and contaminants.This review states that the symmetrically or unsymmetrically delivered resources via AM fungi are imperative to maintain facilitative interactions between intercrops.In addition,the responses of AM fungi to intercropping are also discussed,including changes in abundance,diversity,community composition and colonization level.Although general proliferations in AM fungi via intercropping have been shown,the plant hosts and neighbors may exert different influences on AM fungi.Therefore,further research is needed in quantifying the mediating role of AM fungi on outputs of intercropping systems,clarifying the driving forces,and exploring the causation between these processes and the changes in AM fungi themselves.To conclude,the integration with AM fungi extends the understanding of key soil biological processes driving plant facilitation and will guide efforts to optimizing intercropping systems.展开更多
Chronosequences of ancient rice terraces serve as an invaluable archive for reconstructions of historical human-environment interactions. Presently, however, these reconstructions are based on traditional soil physico...Chronosequences of ancient rice terraces serve as an invaluable archive for reconstructions of historical human-environment interactions. Presently, however, these reconstructions are based on traditional soil physico-chemical properties. The microorganisms in palaeosols have been unexplored. We hypothesized that microbial information can be used as an additional proxy to complement and consolidate archaeological interpretations. To test this hypothesis, the palaeoenvironmental methanogenic archaeal DNA in Longji Terraces, one of the famous ancient terraces in China, dating back to the late Yuan Dynasty(CE1361–1406), was chronosequenced by high-throughput sequencing. It was found that the methanogenic archaeal abundance, diversity and community composition were closely associated with the 630 years of rice cultivation and in line with changes in multi-proxy data. Particularly, the centennial-and decadalscale influences of known historical events, including social turbulences(The Taiping Rebellion, CE1850–1865), palaeoclimate changes(the Little Ice Age) and recorded natural disasters(earthquakes and inundation), on ancient agricultural society were clearly echoed in the microbial archives as variations in alpha and beta diversity. This striking correlation suggests that the microorganisms archived in palaeosols can be quantitatively and qualitatively analyzed to provide an additional proxy, and palaeo-microbial information could be routinely incorporated in the toolkit for archaeological interpretation.展开更多
基金funded by the National Natural Science Foundation of China(No.42177304)the National Key R&D Program of China(No.2022YFD1500202)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2016285)。
文摘Mycorrhiza helper bacteria(MHB)can promote the formation and functioning of arbuscular mycorrhizal(AM)symbiosis,but their role and application potential in coping with soil-borne diseases are still unclear.A 14-week greenhouse pot experiment was conducted to obtain several actinomycete strains helping AM symbiosis in suppressing the Phytophthora blight of pepper(Capsicum annuum L.),using a soil inoculated with Phytophthora capsici after sterilization.Five Streptomyces strains,including S.pseudogriseolus,S.albogriseolus,S.griseoaurantiacus,S.tricolor,and S.tendae,as well as the AM fungus(Funneliformis caledonium)were tested.The Phytophthora blight severity reached 66%at full productive stage in the uninoculated control,and inoculation of F.caledonium,S.griseoaurantiacus,and S.tricolor alone significantly decreased(P<0.05)it to 47%,40%,and 35%,respectively.Compared to F.caledonium alone,additional inoculation of S.tricolor or S.tendae,which were isolated from the rhizosphere of a healthy individual in an infected field,significantly elevated(P<0.05)root mycorrhizal colonization,root biomass,fruit yield,and total K acquisitions of pepper and further significantly decreased(P<0.05)blight severity.According to the feature of enhancing disease-suppression by AM symbiosis,both S.tricolor and S.tendae were confirmed as MHB strains here.Specifically,S.tendae had a stronger performance in directly accelerating mycorrhization,while S.tricolor was also an antagonist to the pathogenic P.capsici.Furthermore,S.griseoaurantiacus with the independent disease-suppression function was not an MHB strain here.The redundancy analyses demonstrated that when AM fungus was present,root mycorrhizal colonization replaced soil pH becoming the main factor affecting pepper Phytophthora blight.Thus,S.tricolor and S.tendae seemed to have the value of preparation and application in the future to help AM symbiosis against pepper Phytophthora blight.
基金funded by the National Natural Science Foundation of China(No.41771291)the Jiangsu Agricultural Science and Technology Innovation Fund,China(No.CX(21)3183)+1 种基金the Jiangsu Specially Appointed Professor Program,Chinathe Jiangsu Six Talent Peaks Program,China(No.NY-083)。
文摘Rice fields are a major source of greenhouse gases,such as nitrous oxide (N_(2)O) and methane (CH_(4)).Organic fertilizers may potentially replace inorganic fertilizers to meet the nitrogen requirement for rice growth;however,the simultaneous effects of organic fertilizers on N_(2)O and CH_(4)emissions and crop yield in paddy fields remain poorly understood and quantified.In this study,experimental plots were established in conventional double-cropping paddy fields in the Pearl River Delta,China,including an unfertilized control and five fertilizer treatments with fresh organic fertilizer (FOF),successively composted organic fertilizer (SOF),chemically composted organic fertilizer (COF),COF supplemented with inorganic fertilizer (COIF),and chemical fertilizers (CFs)(TFOF,TSOF,TCOF,TCOIF,and TCF,respectively).Paddy field soils behaved simultaneously as an N_(2)O sink (cumulative N_(2)O emission:-196 to-381 g N ha^(-1)) and as a CH_(4)source (cumulative CH_(4)emission:719 to 2 178 kg ha^(-1)).Compared to CFs,the effects of organic fertilizers on N_(2)O emission were not significant.In contrast,total annual CH_(4)emission increased by 157%,132%,125%,and 37%in TFOF,TCOF,TSOF,and TCOIF,respectively,compared to TCF.In TCOIF,rice yield was maintained,while CH_(4)emission was not significantly increased from the paddy fields characterized by a prolonged flood period.An important next step is to extend these field-based measurements to larger rice cultivation areas to quantify the regional and national-scale impacts on greenhouse gas emissions and to help determine the optimum practice for fertilizer use.
基金funded by the National Natural Science Foundation of China(No.41771291)the Agricultural Science and Technology Innovation Fund of Jiangsu,China(No.CX(21)3183)+2 种基金the Specially-Appointed Professor Program of Jiangsu,Chinathe Six Talent Peaks Project in Jiangsu Province,China(No.NY-083)the Startup Foundation for Introducing Talent of NUIST,China。
文摘Ammonia(NH_(3)) volatilization from rice fields contributes to poor air quality and indicates low nitrogen use efficiency. Although organic fertilizers can meet the nitrogen requirement for rice growth, the simultaneous effects of organic fertilizers on NH_(3) volatilization and rice yield in paddy fields are poorly understood and quantified. To address this gap in our knowledge, experimental field plots were established in a conventional double-cropping paddy field in the Pearl River Delta region, southern China. Five fertilizer treatments were used besides the control with no fertilizer: fresh organic fertilizer, successively composted organic fertilizer, chemically composted organic fertilizer, mixture of chemically composted organic fertilizer with inorganic fertilizer, and chemical fertilizer. Ammonia volatilization was measured using a batch-type airflow enclosure method. No significant differences in grain yield were observed among organic and chemical fertilizer treatments. However, compared with chemical fertilizer, chemically composted organic fertilizer and successively composted organic fertilizer significantly decreased total NH_(3) volatilization by 70% and 68%, respectively. The ammonium-nitrogen concentration in field surface water correlated strongly(P < 0.01) and positively with NH_(3) volatilization across fertilization treatments. Our findings demonstrate that chemically composted organic fertilizer can sustain rice yield while reducing NH_(3) volatilization. An important future step is to promote these field measurements to similar rice cultivation areas to quantify the regional-and national-scale impact on air quality and nitrogen deposition in sensitive areas, and to design and implement better fertilizer management practices.
基金supported by the National Natural Science Foundation of China (No. 40801091)the Ministry of Science and Technology of China (No. 2007AA061101)
文摘The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of a plant-microbe remediation system, contaminated agricultural soils were amended with different dosages of sewage sludge (SS) and cattle manure (CM) in the presence of alfalfa (Medicago sativa L.) and PAHs-degraders (Bacillus sp. and Flavobacterium sp.). The results indicated that the alfalfa mean biomasses varied from 0.56 to 2.23 g/pot in root dry weight and from 1.80 to 4.88 g/pot in shoot dry weight. Low dose amendments, with rates of SS at 0.1% and CM at 1%, had prominent effects on plant growth and soil PAHs degradation. After 60-day incubation, compared with about 5.6% in the control, 25.8% PAHs removal was observed for treatments in the presence of alfalfa and PAHs-degraders; furthermore, when amended with different dosages of SS and CM, the removed PAHs from soils increased by 35.5%--44.9% and 25.5%-42.3%, respectively. In particular, the degradation of high-molecular-weight PAHs was up to 42.4%. Dehydrogenase activities (DH) ranged between 0.41 and 1.83 ~tg triphenylformazan/(g dry soil.hr) and the numbers of PAHs-degrading microbes (PDM) ranged from 1.14x106 to 16.6x106 most-probable-number/g dry soil. Further investigation of the underlying microbial mechanism revealed that both DH and PDM were stimulated by the addition of organic wastes and significantly correlated with the removal ratio of PAHs. In conclusion, the effect of organic waste application on soil PAHs removal to a great extent is dependent on the interactional effect of nutrients and dissolved organic matter in organic waste and soil microorganisms.
基金This work was funded by the National Natural Science Founda-tion of China(No.41671265)the National Key R&D Programs(2017YFD0200603 and 2016YFD0200306)of ChinaJ.H.is supported by the Youth Innovation Promotion Association(No.2016285)of Chinese Academy of Sciences.
文摘Intercropping,which gains productivity and ecological benefits through plant facilitative interactions,is a practice often associated with sustainable agriculture.In such systems,arbuscular mycorrhizal(AM)fungi and the hyphal networks play key roles in plant facilitation by promoting connectivity,mediating interplant transfer of metabolic resources,and managing weeds,pathogens,and contaminants.This review states that the symmetrically or unsymmetrically delivered resources via AM fungi are imperative to maintain facilitative interactions between intercrops.In addition,the responses of AM fungi to intercropping are also discussed,including changes in abundance,diversity,community composition and colonization level.Although general proliferations in AM fungi via intercropping have been shown,the plant hosts and neighbors may exert different influences on AM fungi.Therefore,further research is needed in quantifying the mediating role of AM fungi on outputs of intercropping systems,clarifying the driving forces,and exploring the causation between these processes and the changes in AM fungi themselves.To conclude,the integration with AM fungi extends the understanding of key soil biological processes driving plant facilitation and will guide efforts to optimizing intercropping systems.
基金supported by National Natural Science Foundation of China(41671267,41430859 and 41271256)the CAS Strategic Priority Research Program Grant(XDB15020103)+2 种基金National Key R&D Program(2016YFD0200306)National Basic Research Program(973 Program)(2014CB954500)Knowledge Innovation Program of Chinese Academy of Sciences(ISSASIP1639)
文摘Chronosequences of ancient rice terraces serve as an invaluable archive for reconstructions of historical human-environment interactions. Presently, however, these reconstructions are based on traditional soil physico-chemical properties. The microorganisms in palaeosols have been unexplored. We hypothesized that microbial information can be used as an additional proxy to complement and consolidate archaeological interpretations. To test this hypothesis, the palaeoenvironmental methanogenic archaeal DNA in Longji Terraces, one of the famous ancient terraces in China, dating back to the late Yuan Dynasty(CE1361–1406), was chronosequenced by high-throughput sequencing. It was found that the methanogenic archaeal abundance, diversity and community composition were closely associated with the 630 years of rice cultivation and in line with changes in multi-proxy data. Particularly, the centennial-and decadalscale influences of known historical events, including social turbulences(The Taiping Rebellion, CE1850–1865), palaeoclimate changes(the Little Ice Age) and recorded natural disasters(earthquakes and inundation), on ancient agricultural society were clearly echoed in the microbial archives as variations in alpha and beta diversity. This striking correlation suggests that the microorganisms archived in palaeosols can be quantitatively and qualitatively analyzed to provide an additional proxy, and palaeo-microbial information could be routinely incorporated in the toolkit for archaeological interpretation.