Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inN...Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.展开更多
African swine fever virus(ASFV)infection poses enormous threats and challenges to the global pig industry;however,no effective vaccine is available against ASFV,attributing to the huge viral genome(approximately189 kb...African swine fever virus(ASFV)infection poses enormous threats and challenges to the global pig industry;however,no effective vaccine is available against ASFV,attributing to the huge viral genome(approximately189 kb)and numerous encoding products(>150 genes)due to the limited understanding on the molecular mechanisms of viral pathogenesis.Elucidating the host-factor/viral-protein interaction network will reveal new targets for developing novel antiviral therapies.Using proteomic analysis,we identified 255 cellular proteins that interact with the ASFV-encoded pE301R protein when transiently expressed in HEK293T cells.Gene ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)database enrichment,and protein-protein interaction(PPI)network analyses revealed that pE301R-interacting host proteins are potentially involved in various biological processes,including protein translation and folding,response to stimulation,and mitochondrial transmembrane transport.The interactions of two putative cellular proteins(apoptosis inducing factor mitochondria associated 1(AIFM1)and vimentin(VIM))with pE301R-apoptosis inducing factor have been verified by co-immunoprecipitation.Our study revealed the inhibitory role of pE301R in interferon(IFN)induction that involves VIM sequestration by pE301R,identified interactions between ASFV pE301R and cellular proteins,and predicted the potential function of pE301R and its associated biological processes,providing valuable information to enhance our understanding of viral protein function,pathogenesis,and potential candidates for the prevention and control of ASFV infection.展开更多
Polycomblike2(PCL2) is a well-known component of polycomb repressive complex 2(PRC2) and plays important roles in H3 K27 methylation and homeotic gene silencing.However,the involvement of PCL2 in breast cancer develop...Polycomblike2(PCL2) is a well-known component of polycomb repressive complex 2(PRC2) and plays important roles in H3 K27 methylation and homeotic gene silencing.However,the involvement of PCL2 in breast cancer development remains unclear.Here,we established PCL2 as a tumor suppressor gene in breast cancer.Expression level of PCL2 was significantly downregulated in breast cancer tissue samples observed at different TNM stages.Ectopic expression of PCL2 could significantly inhibit cell proliferation and promoted apoptosis.PCL2 also remarkably elevated levels of p53 and its targets by increasing p53 stability.Mechanistically,PCL2 protected p53 proteins from MDM2-mediated ubiquitination and degradation by sequestering MDM2 into the nucleolus.Overexpression of PCL2 also suppressed migration and invasion by inhibiting epithelial-mesenchymal transition.PCL2 expression was correlated with Ecadherin expression and was inversely correlated with vimentin expression.Furthermore,PCL2 knockdown could attenuate anti-tumor effect of MLN4924.Taken together,our findings indicated that PCL2 played a tumor suppressor role in development and progression of breast cancer and may be a prognostic and predictive marker for breast cancer.展开更多
Biochar,a known soil amendment,has been found to alleviate plant or soil-borne diseases.However,the related mechanisms are poorly understood,especially from the perspective of microbes colonizing in raw biochar.In thi...Biochar,a known soil amendment,has been found to alleviate plant or soil-borne diseases.However,the related mechanisms are poorly understood,especially from the perspective of microbes colonizing in raw biochar.In this study,laboratory studies,including isolation,adsorption,antifungal test,were employed to investigate biological characteristic of a fungus isolated from aging biochars(peanut shell biochar,rice husk biochar and bamboo biochar),as well as antimicrobial mechanisms on Fusarium species which cause wheat crown rot and Fusarium head blight(FHB).Furthermore,the field trial was conducted to investigate the effect of this fungus on spikelet disease rate and crop yield.The results were as follows:the isolated fungus was identified as Papiliotrema flavescens(P.flavescens),which was confirmed from ambient air,and its properties were characterized,such as the optimal growth pH and the growth curve.The mixed action of 1×10^(6)cells/mL P.flavescens and 1×10^(6)cells/mL Bacillus subtilis(B.subtilis)had the best antifungal effect,reaching an antifungal rate of 86.5%.The P.fla-vescens exerted antifungal effects through potential competition among nutrition,space,and parasitism,not from producing antifungal substances.Results from the field trial showed that the presence of P.flavescens could reduce the spike disease rate by 43.2%and increase the yield by 34.5%.In summary,the present study provides novel evidence about microbes from aging biochars that can prevent wheat crown rot and FHB.展开更多
Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it i...Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.展开更多
When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins ...When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins involved in cellular stress are heat shock proteins (HSPs).展开更多
文摘Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.
基金supported by the National Key R&D Program of China (2019YFA0905700,2018YFA0900400)Natural Science Foundation of China (31900147,32170038,32270088,M-0348 and 32161133013)+2 种基金the 111 Project (B16030)a Sino-German Helmholtz International Lab grantsupported by US National Institutes of Health grant 1R01CA251698-01 and CPRIT grants RP180349 and RP190077.
文摘African swine fever virus(ASFV)infection poses enormous threats and challenges to the global pig industry;however,no effective vaccine is available against ASFV,attributing to the huge viral genome(approximately189 kb)and numerous encoding products(>150 genes)due to the limited understanding on the molecular mechanisms of viral pathogenesis.Elucidating the host-factor/viral-protein interaction network will reveal new targets for developing novel antiviral therapies.Using proteomic analysis,we identified 255 cellular proteins that interact with the ASFV-encoded pE301R protein when transiently expressed in HEK293T cells.Gene ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)database enrichment,and protein-protein interaction(PPI)network analyses revealed that pE301R-interacting host proteins are potentially involved in various biological processes,including protein translation and folding,response to stimulation,and mitochondrial transmembrane transport.The interactions of two putative cellular proteins(apoptosis inducing factor mitochondria associated 1(AIFM1)and vimentin(VIM))with pE301R-apoptosis inducing factor have been verified by co-immunoprecipitation.Our study revealed the inhibitory role of pE301R in interferon(IFN)induction that involves VIM sequestration by pE301R,identified interactions between ASFV pE301R and cellular proteins,and predicted the potential function of pE301R and its associated biological processes,providing valuable information to enhance our understanding of viral protein function,pathogenesis,and potential candidates for the prevention and control of ASFV infection.
基金supported by the National Key R&D Program of China(2016YFE0129200)the National Natural Science Foundation of China(31571321,31171428)the Institute of the Fundamental Research Funds of Shandong University(2015JC036)
文摘Polycomblike2(PCL2) is a well-known component of polycomb repressive complex 2(PRC2) and plays important roles in H3 K27 methylation and homeotic gene silencing.However,the involvement of PCL2 in breast cancer development remains unclear.Here,we established PCL2 as a tumor suppressor gene in breast cancer.Expression level of PCL2 was significantly downregulated in breast cancer tissue samples observed at different TNM stages.Ectopic expression of PCL2 could significantly inhibit cell proliferation and promoted apoptosis.PCL2 also remarkably elevated levels of p53 and its targets by increasing p53 stability.Mechanistically,PCL2 protected p53 proteins from MDM2-mediated ubiquitination and degradation by sequestering MDM2 into the nucleolus.Overexpression of PCL2 also suppressed migration and invasion by inhibiting epithelial-mesenchymal transition.PCL2 expression was correlated with Ecadherin expression and was inversely correlated with vimentin expression.Furthermore,PCL2 knockdown could attenuate anti-tumor effect of MLN4924.Taken together,our findings indicated that PCL2 played a tumor suppressor role in development and progression of breast cancer and may be a prognostic and predictive marker for breast cancer.
基金This research was supported by the Key Research Projects of Hebei Province(Grant number:20326405D)the National Wheat Industry Technology System(CARS301).
文摘Biochar,a known soil amendment,has been found to alleviate plant or soil-borne diseases.However,the related mechanisms are poorly understood,especially from the perspective of microbes colonizing in raw biochar.In this study,laboratory studies,including isolation,adsorption,antifungal test,were employed to investigate biological characteristic of a fungus isolated from aging biochars(peanut shell biochar,rice husk biochar and bamboo biochar),as well as antimicrobial mechanisms on Fusarium species which cause wheat crown rot and Fusarium head blight(FHB).Furthermore,the field trial was conducted to investigate the effect of this fungus on spikelet disease rate and crop yield.The results were as follows:the isolated fungus was identified as Papiliotrema flavescens(P.flavescens),which was confirmed from ambient air,and its properties were characterized,such as the optimal growth pH and the growth curve.The mixed action of 1×10^(6)cells/mL P.flavescens and 1×10^(6)cells/mL Bacillus subtilis(B.subtilis)had the best antifungal effect,reaching an antifungal rate of 86.5%.The P.fla-vescens exerted antifungal effects through potential competition among nutrition,space,and parasitism,not from producing antifungal substances.Results from the field trial showed that the presence of P.flavescens could reduce the spike disease rate by 43.2%and increase the yield by 34.5%.In summary,the present study provides novel evidence about microbes from aging biochars that can prevent wheat crown rot and FHB.
基金The completion of this paper owns a great deal to the associate editor and anonymous reviewers for their valuable suggestions. The first author is grateful to Xiangzhi Fu for her language help, Guangxing Ding and Dongdong Zeng for their advice. All the authors of this paper express their gratitude to CIOMP for its experiment and site support. And all of us gratefully acknowledge the supports provided for this research by Jilin Natural Science Foundation of China (Grant No. 201505200059JH).
文摘Conventionally, high dynamic-range (HDR) imaging is based on taking two or more pictures of the same scene with different exposure. However, due to a high-speed relative motion between the camera and the scene, it is hard for this technique to be applied to push-broom remote sensing cameras. For the sake of HDR imaging in push-broom remote sensing applications, the present paper proposes an innovative method which can generate HDR images without redundant image sensors or optical components. Specifically, this paper adopts an area array CMOS (complementary metal oxide semiconductor) with the digital domain time-delay-integration (DTDI) technology for imaging, instead of adopting more than one row of image sensors, thereby taking more than one picture with different exposure. And then a new HDR image by fusing two original images with a simple algorithm can be achieved. By conducting the experiment, the dynamic range (DR) of the image increases by 26.02dB. The proposed method is proved to be effective and has potential in other imaging applications where there is a relative motion between the cameras and scenes.
基金supported by the National Natural Science Foundation of China (31571321, 31171428)the National Key Research and Develepment Program of China (2016YFE0129200)+1 种基金the Institute of the Fundamental Research Funds of Shandong University (2015JC036)the Open Projects of State Key Laboratory of Molecular Oncology (SKL-KF-2017-17)
文摘When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins involved in cellular stress are heat shock proteins (HSPs).