Autophagy is an evolutionarily conserved process involved in the degradation of long-lived proteins and excessive or dysfunctional organelles. As a pivotal cellular response, autophagy has been extensively studied and...Autophagy is an evolutionarily conserved process involved in the degradation of long-lived proteins and excessive or dysfunctional organelles. As a pivotal cellular response, autophagy has been extensively studied and is known to be involved in various diseases. Ferroptosis is a recently discovered form of regulated cell death characterized by iron overload, leading to the accumulation of lethal levels of lipid hydroperoxides. Recently, an increasing number of studies have revealed a link between autophagy and ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) is an urgent dilemma after myocardial infarction recanalization, which is regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential relationship between autophagy and ferroptosis in MIRI remains unexplored. In this study, we briefly review the mechanisms of autophagy and ferroptosis, including their roles in MIRI. Moreover, we provide an overview of the potential crosstalk in MIRI. Clarifying the relationship between different cell death pathways may provide new ideas for the treatment of MIRI in the future.展开更多
基金supported by funding from the Anhui Natural Science Foundation of China(No.2008085MH239).
文摘Autophagy is an evolutionarily conserved process involved in the degradation of long-lived proteins and excessive or dysfunctional organelles. As a pivotal cellular response, autophagy has been extensively studied and is known to be involved in various diseases. Ferroptosis is a recently discovered form of regulated cell death characterized by iron overload, leading to the accumulation of lethal levels of lipid hydroperoxides. Recently, an increasing number of studies have revealed a link between autophagy and ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) is an urgent dilemma after myocardial infarction recanalization, which is regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential relationship between autophagy and ferroptosis in MIRI remains unexplored. In this study, we briefly review the mechanisms of autophagy and ferroptosis, including their roles in MIRI. Moreover, we provide an overview of the potential crosstalk in MIRI. Clarifying the relationship between different cell death pathways may provide new ideas for the treatment of MIRI in the future.