The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy.In this work,a PdCu nanoalloy was successfully anchored on TiO_(2)encapsulated with carbon to construct a catalyst.Ou...The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy.In this work,a PdCu nanoalloy was successfully anchored on TiO_(2)encapsulated with carbon to construct a catalyst.Outstanding kinetics of the hydrolysis of ammonia borane(turnover frequency of 279 mol·min^(-1·)mol_(Pd)^(-1))ranking the third place among Pd-based catalysts was achieved in the absence of alkali.Both experimental research and theoretical calculations reveal a lower activation energy of the B-H bond on the PdCu nanoalloy catalyst than that on pristine Pd and a lower activation energy of the O-H bond than that on pristine Cu.The redistribution of d electron and the shift of the d-band center play a critical role in increasing the electron density of Pd and improving the catalytic performances of Pd_(0.1)Cu_(0.9)/TiO_(2)-porous carbon(Pd_(0.1)Cu_(0.9)/T-PC).This work provides novel insights into highly dual-active alloys and sheds light on the mechanism of dual-active sites in promoting borohydride hydrolysis.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22279118,22279117,52071135,51871090,and U1804135)the Fundamental Research Funds for the Universities of Henan Province(No.NSFRF220201).
文摘The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy.In this work,a PdCu nanoalloy was successfully anchored on TiO_(2)encapsulated with carbon to construct a catalyst.Outstanding kinetics of the hydrolysis of ammonia borane(turnover frequency of 279 mol·min^(-1·)mol_(Pd)^(-1))ranking the third place among Pd-based catalysts was achieved in the absence of alkali.Both experimental research and theoretical calculations reveal a lower activation energy of the B-H bond on the PdCu nanoalloy catalyst than that on pristine Pd and a lower activation energy of the O-H bond than that on pristine Cu.The redistribution of d electron and the shift of the d-band center play a critical role in increasing the electron density of Pd and improving the catalytic performances of Pd_(0.1)Cu_(0.9)/TiO_(2)-porous carbon(Pd_(0.1)Cu_(0.9)/T-PC).This work provides novel insights into highly dual-active alloys and sheds light on the mechanism of dual-active sites in promoting borohydride hydrolysis.