期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS IN R^N
1
作者 Jianhua CHEN xianjiu huang +1 位作者 Bitao CHENG Xianhua TANG 《Acta Mathematica Scientia》 SCIE CSCD 2020年第5期1495-1524,共30页
In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a posit... In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay. 展开更多
关键词 generalized quasilinear Schrodinger equation ground state solutions EXISTENCE concentration behavior
下载PDF
PRE-IMAGE ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS 被引量:3
2
作者 xianjiu huang Xi WEN Fanping ZENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第3期441-445,共5页
The authors define and study topological pre-image entropy for the non-autonomous discrete dynamical systems given by a sequence {fi}i=1^∞ of continuous self-maps of a compact topological space. The basic properties ... The authors define and study topological pre-image entropy for the non-autonomous discrete dynamical systems given by a sequence {fi}i=1^∞ of continuous self-maps of a compact topological space. The basic properties and the invariant with respect to equiconjugacy of pre-image entropy for the non-autonomous discrete dynamical systems are obtained. 展开更多
关键词 Equiconjugacy NON-AUTONOMOUS pre-image entropy sequence of continuous self-maps
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部