Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring ...Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring new viewpoints to carbon-based superconductivity.Although molybdenum carbides(Mo-Cs)have multiple crystalline stacking orders,there are still few structures reported for the lack of higher energy supply during growth.In this study,we report a two-step vapor deposition method to grow superconducting η-Mo3C2 films with different thicknesses,with the assistance of controllable plasma power.The grownη-Mo3C2 films show polycrystalline characteristics,but they still present superior superconductivity.The 3.0-nm-thick film has the superconducting transition temperature of 5.38 K,and its electrical performances follow truly 2D superconducting transitions.This study will not only exhibit a robust superconductingη-Mo3C2 ultrathin film,but also provides a convenient growth way to realize more carbide-based heterostructures for future device applications.展开更多
基金the National Key R&D Program of China(2018YFA0305800)the Fundamental Research Funds for the Central Universities(020414380145 and 020414380153)+2 种基金the National Natural Science Foundation of China(11674154,11761131010,51972163,11904163,61974021 and 11525415)the Natural Science Foundation of Jiangsu Province(BK20190010)the Fok Ying-Tong Education Foundation of China(171038)。
文摘Two-dimensional(2D)superconductors have intriguing physical properties and abundant potential applications.Recently,2D superconductingα-Mo2C and facecentered cubic Mo2C have been controllably prepared and they bring new viewpoints to carbon-based superconductivity.Although molybdenum carbides(Mo-Cs)have multiple crystalline stacking orders,there are still few structures reported for the lack of higher energy supply during growth.In this study,we report a two-step vapor deposition method to grow superconducting η-Mo3C2 films with different thicknesses,with the assistance of controllable plasma power.The grownη-Mo3C2 films show polycrystalline characteristics,but they still present superior superconductivity.The 3.0-nm-thick film has the superconducting transition temperature of 5.38 K,and its electrical performances follow truly 2D superconducting transitions.This study will not only exhibit a robust superconductingη-Mo3C2 ultrathin film,but also provides a convenient growth way to realize more carbide-based heterostructures for future device applications.