期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High entropy ultra-high temperature ceramic thermal insulator(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C with controlled microstructure and outstanding properties 被引量:3
1
作者 Zhuojie Shao Zhen Wu +5 位作者 Luchao Sun xianpeng liang Zhaoping Luo Haikun Chen Junning Li Jingyang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期190-199,共10页
Due to advancements of hypersonic vehicles,ultra-high temperature thermal insulation materials are urgently requested to shield harsh environment with superhigh heat flux.Toward this target,ultra-high temperature cera... Due to advancements of hypersonic vehicles,ultra-high temperature thermal insulation materials are urgently requested to shield harsh environment with superhigh heat flux.Toward this target,ultra-high temperature ceramics(UHTCs)are the only choice due to their excellent capability at ultra-high temperatures.We herein report a novel highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C fabricated by foam-gelcasting-freeze drying technology combined with in-situ pressureless reaction sintering.The porous(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C exhibited ultra-high porosity of 86.4%-95.9%,as well as high strength and low thermal conductivity of 0.70–11.77 MPa and 0.164–0.239 W/(m·K),respectively.Specifically,Si C sintering additive only locates at the pit of the surface of sintering neck between UHTC grains,and there is no secondary phase or intergranular film at the grain boundary.Besides,the oxidation resistance of high entropy carbide powders is greatly improved compared with that of the mixed five carbide powders.This work clearly highlights the merits of highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C as an ultra-high temperature thermal insulation material. 展开更多
关键词 High entropy UHTCs High porosity High strength Low thermal conductivity Oxidation resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部