The application of low-condensation diesel in cold regions with extremely low ambient temperatures(−14 to−29°C)has enabled the operation of diesel vehicles.Still,it may contribute to heavy haze pollution in cold ...The application of low-condensation diesel in cold regions with extremely low ambient temperatures(−14 to−29°C)has enabled the operation of diesel vehicles.Still,it may contribute to heavy haze pollution in cold regions during winter.Here we examine pollutant emissions from low-condensation diesel in China.We measure the emissions of elemental carbon(EC),organic carbon(OC),and elements,including heavy metals such as arsenic(As).Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel,respectively.Indicators of vehicular sources,including EC,As,lead(Pb),cadmium(Cd),chromium(Cr),nickel(Ni),and manganese(Mn),increased by approximately 20.2-162.5%when using low-condensation diesel.Seasonal variation of vehicular source indicators,observed at road site ambient environments revealed the enhancement of PM2.5 pollution by the application of low-condensation diesel in winter.These findings suggest that−35#diesel,a low-cetane index diesel,may enhance air pollution in winter,according to a dynamometer test conducted in laboratory.It raises questions about whether higher emissions are released if−35#diesel is applied to running vehicles in real-world cold ambient environments.展开更多
基金National Natural Science Foundation of China(51778181)Open Project of the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES201908).
文摘The application of low-condensation diesel in cold regions with extremely low ambient temperatures(−14 to−29°C)has enabled the operation of diesel vehicles.Still,it may contribute to heavy haze pollution in cold regions during winter.Here we examine pollutant emissions from low-condensation diesel in China.We measure the emissions of elemental carbon(EC),organic carbon(OC),and elements,including heavy metals such as arsenic(As).Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel,respectively.Indicators of vehicular sources,including EC,As,lead(Pb),cadmium(Cd),chromium(Cr),nickel(Ni),and manganese(Mn),increased by approximately 20.2-162.5%when using low-condensation diesel.Seasonal variation of vehicular source indicators,observed at road site ambient environments revealed the enhancement of PM2.5 pollution by the application of low-condensation diesel in winter.These findings suggest that−35#diesel,a low-cetane index diesel,may enhance air pollution in winter,according to a dynamometer test conducted in laboratory.It raises questions about whether higher emissions are released if−35#diesel is applied to running vehicles in real-world cold ambient environments.