期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Precipitation Microphysical Characteristics of Typhoon Ewiniar(2018) before and after Its Final Landfall over Southern China
1
作者 Lu FENG Hui XIAO +4 位作者 xiantong liu Sheng HU Huiqi LI liusi XIAO Xiao HAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1005-1020,共16页
In this paper, the evolution of the microphysical characteristics in different regions(eyewall, inner core, and outer rainbands) and different quadrants [downshear left(DL), downshear right(DR), upshear left(UL), and ... In this paper, the evolution of the microphysical characteristics in different regions(eyewall, inner core, and outer rainbands) and different quadrants [downshear left(DL), downshear right(DR), upshear left(UL), and upshear right(UR)]during the final landfall of Typhoon Ewiniar(2018) is analyzed using two-dimensional video disdrometer and S-band polarimetric radar data collected in Guangdong, China. Due to the different types of underlying surfaces, the periods before landfall(mainly dominated by underlying sea surface) and after landfall(mainly dominated by underlying land surface) are also analyzed. Both before landfall and after landfall, the downshear quadrants had the dominate typhoon precipitation. The outer rainbands had more graupel than the inner core, resulting in a larger radar reflectivity, differential reflectivity, specific differential phase shift, and mass-weighted mean diameter below the melting layer. Compared with other regions, the eyewall region had the smallest mean logarithmic normalized intercept parameter before landfall and the smallest mean mass-weighted mean diameter and the largest mean logarithmic normalized intercept parameter after landfall. The hydrometeor size sorting was obvious in the eyewall and inner core(especially in the eyewall) after landfall. A high concentration of large raindrops fell in the DL quadrant, and more small raindrops fell in the UR quadrant. Although the icephase process and warm rain process were both important in the formation of tropical cyclone precipitation, the warm rain process(ice-phase process) contributed more liquid water before landfall(after landfall). This investigation provides a reference for improving the microphysical parameterization scheme in numerical models. 展开更多
关键词 tropical cyclone precipitation microphysics raindrop size distribution southern China
下载PDF
Effect of Aerosol Particles on Orographic Clouds:Sensitivity to Autoconversion Schemes
2
作者 Hui XIAO Yan YIN +2 位作者 Pengguo ZHAO Qilin WAN xiantong liu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第2期229-238,共10页
Aerosol particles can serve as cloud condensation nuclei(CCN)to influence orographic clouds.Autoconversion,which describes the initial formation of raindrops from the collision of cloud droplets,is an important proces... Aerosol particles can serve as cloud condensation nuclei(CCN)to influence orographic clouds.Autoconversion,which describes the initial formation of raindrops from the collision of cloud droplets,is an important process for aerosol-cloud-precipitation systems.In this study,seven autoconversion schemes are used to investigate the impact of CCN on orographic warm-phase clouds.As the initial cloud droplet concentration is increased from 100 cm^(-3)to 1000 cm^(-3)(to represent an increase in CCN),the cloud water increases and then the rainwater is suppressed due to a decrease in the autoconversion rate,leading to a spatial shift in surface precipitation.Intercomparison of the results from the autoconversion schemes show that the sensitivity of cloud water,rainwater,and surface precipitation to a change in the concentration of CCN is different from scheme to scheme.In particular,the decrease in orographic precipitation due to increasing CCN is found to range from-87%to-10%depending on the autoconversion scheme.Moreover,the surface precipitation distribution also changes significantly by scheme or CCN concentration,and the increase in the spillover(ratio of precipitation on the leeward side to total precipitation)induced by increased CCN ranges from 10%to 55%under different autoconversion schemes.The simulations suggest that autoconversion parameterization schemes should not be ignored in the interaction of aerosol and orographic cloud. 展开更多
关键词 orographic cloud PRECIPITATION autoconversion aerosol particles
下载PDF
Raindrop Size Distribution Parameters Retrieved from Guangzhou S-band Polarimetric Radar Observations 被引量:12
3
作者 xiantong liu Qilin WAN +4 位作者 Hong WANG Hui XIAO Yu ZHANG Tengfei ZHENG Lu FENG 《Journal of Meteorological Research》 SCIE CSCD 2018年第4期571-583,共13页
According to the statistical shape-slope (μ-A) relationship observed for the first time by several 2D-Video-Distro-meters (2DVD) in southern China, a constrained gamma (C-G) model was proposed for the retrieval... According to the statistical shape-slope (μ-A) relationship observed for the first time by several 2D-Video-Distro-meters (2DVD) in southern China, a constrained gamma (C-G) model was proposed for the retrieval of rain drop size distributions (DSDs) from Guangzhou S-band polarimetric radar observations. Two typical precipitation processes were selected to verify the accuracy of the retrieval scheme. The p-A relationship: A = 0.0241μ^2 + 0.867μ + 2.453 was obtained based on the 2DVD observation results from at Huizhou Longmen station, which is a very representat-ive location in the area. Relying on the Guangzhou polarimetric radar measurements of radar reflectivity (ZHH) and differential reflectivity (ZDR), the gamma (F) size distribution parameters (No, μ, and A) can be retrieved by the C-G model retrieval scheme. The results show that the Guangzhou polarimetric radar retrievals of DSDs were close to the 2DVD observations at Guangzhou Maofengshan station. The rain rate, mass mean diameter, and normalized inter-cept parameter of radar retrievals were in good agreement with the 2DVD observations, and the relative errors were less than 10%. The overall accuracy of the retrieval scheme was high. The retrieval scheme has established the rela-tionship between the polarimetric radar measurements and gamma size distribution parameters. It will be helpful to in-depth research and application of the dual-polarization radar data in microphysical precipitation processes analysis, as well as convection-resolved numerical model data assimilation and prediction effect evaluation. 展开更多
关键词 Guangzhou S-band polarimetric radar 2D-Video-Disdrometer raindrop size distribution retrieval MICROPHYSICS
原文传递
Vertical distribution characteristics of PM in the surface layer of Guangzhou 被引量:10
4
作者 Xuejiao Deng Fei Li +3 位作者 Yuanhong Li Jianyong Li Hongzhi Huang xiantong liu 《Particuology》 SCIE EI CAS CSCD 2015年第3期3-9,共7页
Measurements of particulate matter (PM), i.e., PM10, PM2.5, and PM1, have been performed on the Can- ton Tower, a landmark building in Guangzhou, at heights of 121 and 454 m since November 2010, using a GRIMM 180 ae... Measurements of particulate matter (PM), i.e., PM10, PM2.5, and PM1, have been performed on the Can- ton Tower, a landmark building in Guangzhou, at heights of 121 and 454 m since November 2010, using a GRIMM 180 aerosol particle spectrometer (Germany). Analyses of data from November 2010 to May 2013 showed that the annual average values of PM10, PM2.5, and PM 1 at the observation height of 121 m above the ground were 44.1, 38,2, and 34.9 μg/m3, respectively, and those at 454m above the ground were 35.7, 30,4, and 27.5 μg/m3, respectively. By considering the values of the secondary concentration limits given in the Ambient Air Quality Standards issued in 2012, it was observed that the annual average values of PM10 at the observation heights of 121 and 454 m, as well as those of PM2.5 at 454 m, reached those standards. Furthermore, the over-standard amplitude of the annual average value of PM2.5 at the observation height of 121 m was 9.1%. During the observation period, the maximum daily average val- ues of PM10, PM2.5, and PMI at the observation height of 121 m were 183.3, 144.8, and 123.8 μg/m3, respectively, and those at 454 m were 102.8, 92.7, and 86.4 μg/m3. The daily average values of PM10 at the observation height of 454 m were not above the standards. The over-standard frequencies of the daily average values of PM10 and PM2.5 at the observation height of 121 m were 0.6% and 10,7% respectively, and the over-standard amplitudes were 9.0% and 24.4%, respectively. The over-standard frequency of the daily average value of PM2.5 at the observation height of 454 m was 2.0%, and the over-standard amplitude was 10.4%. Accordingly, it can be stated that the air at the observation height 454 m above the ground did not reach the secondary limit of the new standards. The pollution was most serious during winter, and the air was relatively cleaner during summer, Overall, the vertical distributions of PM10, PM2.5, and PMI decreased with height. The lapse rates showed the following sequence: PMIO 〉 PM2.5 〉 PM1, which indicates that the vertical distribution of fine particles is more uniform than that of coarse particles; the vertical distribution in summer is more uniform than in other seasons. 展开更多
关键词 PM10PM2.5PM10ver-standardVertical distributionSurface layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部