期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Field monitoring of railroad embankment vibration responses in seasonally frozen regions 被引量:2
1
作者 ZiYu Wang xianzhang ling +3 位作者 Feng Zhang LiNa Wang ShiJun Chen ZhanYuan Zhu 《Research in Cold and Arid Regions》 CSCD 2013年第4期393-398,共6页
To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vi... To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions. 展开更多
关键词 seasonally frozen region train-induced vibration field monitoring acceleration vibration characteristics time histories
下载PDF
A mathematical approach to evaluate maximum frost heave of unsaturated silty clay 被引量:1
2
作者 Lin Geng xianzhang ling +2 位作者 Liang Tang Jun Luo XiuLi Du 《Research in Cold and Arid Regions》 CSCD 2017年第5期438-446,共9页
Maximum frost heave of unsaturated frost-susceptible soils,in conjunction with a high water table,is an important consideration for the design of foundations in seasonally frozen regions.Therefore,it is necessary to e... Maximum frost heave of unsaturated frost-susceptible soils,in conjunction with a high water table,is an important consideration for the design of foundations in seasonally frozen regions.Therefore,it is necessary to evaluate accurately and efficiently the maximum frost heave for a given soil.For this purpose,a series of one-sided freezing experiments was conducted on unsaturated silty clay in an open system.Multistage cooling of sufficient duration was applied to the soil sample's top,while constant above-zero temperatures were maintained at the bottom.Then,a simple methodology for calculating maximum frost heave at a given cooling temperature was derived utilizing information obtained within the limited time allotted for each stage.On this basis,an empirical equation for defining maximum frost heave as a function of cooling temperature and overburden pressure was determined.Overall,this study provides a simple and practical procedure that is applicable to the evaluation of maximum frost heave of unsaturated frost-susceptible soils. 展开更多
关键词 MATHEMATICAL APPROACH MAXIMUM FROST HEAVE multistage freezing experiment UNSATURATED silty clay
下载PDF
Test on dynamic characteristics of subgrade of heavy-haul railway in cold regions 被引量:1
3
作者 YingYing Zhao xianzhang ling +3 位作者 ZiYu Wang XinYan Shao LiHui Tian Lin Geng 《Research in Cold and Arid Regions》 CSCD 2015年第5期605-610,共6页
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship betw... Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamie triaxial tests with multi-stage eyelic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data. 展开更多
关键词 low-temperature dynamic triaxial test dynamic constitutive relation dynamic shear modulus damping ratio freezing temperature
下载PDF
The effect of subgrade inhomogeneity induced by freeze-thaw on the dynamic response of track-subgrade system 被引量:1
4
作者 QiongLin Li xianzhang ling +1 位作者 Feng Zhang JiaHui Wang 《Research in Cold and Arid Regions》 CSCD 2013年第5期554-561,共8页
The developed vertical coupling model of Vehicle-Track-Subgrade which considered subgrade layer vibration is present- ed. The equations of motion for the ballast, top and bottom subgrade layers are presented in detail... The developed vertical coupling model of Vehicle-Track-Subgrade which considered subgrade layer vibration is present- ed. The equations of motion for the ballast, top and bottom subgrade layers are presented in detail. Through inputting different coefficients, the dynamic response of track-subgrade system in a seasonal frozen region in different seasons is obtained by the developed model and the uneven freeze-thaw action of subgrade soil is presented in this model. The ef- fect of subgrade inhomogeneity induced by uneven freeze-thaw on the dynamic response of track-subgrade system was studied and the conclusions are as follows. The force at the interface of ballast and top subgrade layer and the defor- mation of ballast induced by a passing train changed sharply at the stiffness mutation zone. The force and deformation decreased with increasing stiffness ratio with the same amplitude of irregularities as the excitation source. The force and deformation were larger with larger amplitudes of irregularities. There was an obvious effect of uneven deformation and stiffness of subgrade on the dynamic response of track-subgrade system. 展开更多
关键词 uneven freeze-thaw vertical vehicle-track-subgrade coupling model subgrade vibration dynamic response
下载PDF
CPT-Based estimation of undrained shear strength of fine-grained soils in the Huanghe River Delta
5
作者 Zhongnian Yang Xuesen Liu +4 位作者 Lei Guo Yuxue Cui Xiuting Su Chao Jia xianzhang ling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第5期136-146,共11页
The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive fin... The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive finegrained soil located at the river-sea boundary.The cone penetration test(CPT)is a convenient and effective in situ testing method which can accurately identify various soil parameters.Studies on undrained shear strength only roughly determine the fine content(FC)without making the FC effect clear.We studied four stations formed in different the Huanghe River Delta periods.We conducted in situ CPT and corresponding laboratory tests,examined the fine content influence on undrained shear strength(S_(u)),and determined the cone coefficient(N_(k)).The conclusions are as follows.(1)The fine content in the area exceeded 90%,and the silt content was high,accounting for more than 70%of all fine particle compositions.(2)The undrained shear strength gradually increased with depth with a maximum of approximately 250 kPa.When the silt content was lower than 60%–70%,the undrained shear strength decreased.(3)The silt and clay content influenced undrained shear strength,and the fitted f_(s)h/q_(t) function model was established,which could be applied to strata with a high fine content.The cone coefficients were between 20 and 25,and the overconsolidated soil layer had a greater cone coefficient. 展开更多
关键词 Huanghe River(Yellow River)Delta fine content(FC) cone penetration test(CPT) undrained shear strength(S_(u)) cone coefficient(N_(k))
下载PDF
Numerical simulation of vibrational response characteristics of railway subgrades with insulation boards
6
作者 ZiYu Wang xianzhang ling +2 位作者 YingYing Zhao Feng Zhang LiHui Tian 《Research in Cold and Arid Regions》 CSCD 2022年第1期23-31,共9页
This study presents a numerical method based on the surface temperature data and the ground temperature increase in Daqing for predicting temperature field distribution in the Binzhou Railway subgrade and analyzing th... This study presents a numerical method based on the surface temperature data and the ground temperature increase in Daqing for predicting temperature field distribution in the Binzhou Railway subgrade and analyzing the temporal and spatial distribution of freeze−thaw status of railway subgrade.The calibrated numerical method is applied to simulate the temperature field distribution and roadbed vibrational response of the railway subgrade with a thermal insulation layer at different seasons.The results show the following:(1)The thermal insulation layer can remarkably increase the soil temperature below it and maximum frost depth in the subgrade.(2)Thermal insulation can effectively reduce the subgrade vibration and protect it from frost damage.(3)Given that the strength requirements are met,the insulation layer should be buried as shallow as possible to effectively reduce the subgrade vibration response.The research findings provide theoretical support for the frost damage prevention of railway subgrades in seasonally frozen regions. 展开更多
关键词 seasonally frozen regions railway subgrade insulation layer vibrational response frost depth
下载PDF
Finite element analysis on deformation of high embankment in heavy-haul railway subjected to freeze-thaw cycles
7
作者 ChengYi Yu Shuang Tian +2 位作者 Liang Tang xianzhang ling GuoQing Zhou 《Research in Cold and Arid Regions》 CSCD 2015年第4期421-429,共9页
Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazh... Finite element simulations are increasingly providing a versatile environment for this topic. In this study, a two-dimensional finite element analysis is conducted to predict the deformation of high embankment in Bazhun heavy-haul railway, China. A recently developed nonlinear softening-type constitutive model is utilized to model the be- havior of subgrade filling materials subjected to freeze-thaw cycles. For the convenience of practical application, the dynamic loading induced by a vehicle is treated as a quasi-static axle load. The deformation of this embankment with different moisture content under freeze-thaw cycles is compared. The results show that when subjected to the first freeze-thaw cycle, the embankment experienced significant deformation variations. Maximum deformation was usually achieved after the embankment with optimum moisture content experienced six freeze-thaw cycles, however, the em- bankment with moisre content of 8.0% and 9.5% deforms continuously even after experiencing almost ten freeze-thaw cycles. Overall, this study provides a simple nonlinear finite element approach for calculating the deformation of the embankment in changing climate conditions. 展开更多
关键词 DEFORMATION nonlinear finite element analysis freeze-thaw cycles EMBANKMENT heavy-haul railway
下载PDF
Numerical simulation of dynamic response of subgrade under moving heavy truck in cold regions
8
作者 Feng Zhang DeCheng Feng +1 位作者 xianzhang ling QiongLin Li 《Research in Cold and Arid Regions》 CSCD 2013年第4期468-477,共10页
This paper reports on the dynamic response of highway subgmde under moving heavy Wuck in cold regions. Numerical simulations are performed in two stages. In the first stage, the moving heavy truck vibration, induced b... This paper reports on the dynamic response of highway subgmde under moving heavy Wuck in cold regions. Numerical simulations are performed in two stages. In the first stage, the moving heavy truck vibration, induced by mad roughness, is calculated through a three-dimensional dynamic interaction model of heavy tmckavement-subgrade, and the lime-histories of nodal loads on the top of the base are calculated through this model. In the second stage, a two-dimensional dynamic finite element model of the bgrade-ground system is formulated, using the calculated nodal loads from the first stage as input. The dynamic resporkse of the subgrade is validated by field measurements, and the effects of mack type, axle loading, running speed, and road roughness on the vertical dynamic slress in the unfrozen period and the spring thawing period are analyzed and discussed. 展开更多
关键词 lynamic response SUBGRADE heavy truck numerical simulation cold regions
下载PDF
Liquefaction-induced damage evaluation of earth embankment and corresponding countermeasure 被引量:1
9
作者 Linlin GU Wei ZHENG +3 位作者 Wenxuan ZHU Zhen WANG xianzhang ling Feng ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第9期1183-1195,共13页
Liquefaction of sandy soils is a big threat to the stability and the safety of an earth embankment laid on saturated soils.A large number of liquefaction-induced damages on embankment due to different types of earthqu... Liquefaction of sandy soils is a big threat to the stability and the safety of an earth embankment laid on saturated soils.A large number of liquefaction-induced damages on embankment due to different types of earthquakes have been reported worldwide.In this research,the dynamic behaviors of earth embankment and the reinforcement effects of grouting as remediation method,subjected to moderate earthquake EQ1 and strong earthquake EQ2,were numerically investigated.The seismic behaviors of ground composed of cohesionless sandy soil and cohesive clayey soil were uniformly described by the cyclic mobility(CM)model,which is capable of describing accurately the mechanical property of the soil due to monotonic and cyclic loadings by accounting for stress-induced anisotropy,over-consolidation,and soil structure.It is known from the numerical investigation that the embankment would experience destructive deformation,and that the collapse mode was closely related to the properties of input seismic motion because high intensities and long durations of an earthquake motion could lead to significant plastic deformation and prolonged soil liquefaction.Under the strong seismic loading of EQ2,a circular collapse surface,combined with huge settlement and lateral spread,occurred inside the liquefication zone and extended towards the embankment crest.In contrast,in moderate earthquake EQ1,upheaval was observed at each toe of the embankment,and instability occurred only in the liquefied ground.An anti-liquefaction remediation via grouting was determined to significantly reduce liquefaction-induced deformation(settlement,lateral spreading,and local uplift)and restrain the deep-seated circular sliding failure,even though the top sandy soil liquefied in both earthquakes.When the structure was subjected to EQ2 motion,local failure occurred on the embankment slope reinforced with grouting,and thus,an additional appropriate countermeasure should be implemented to further strengthen the slope.For both input motions,the surface deformation of the considered embankment decreased gradually as the thickness of reinforcement was increased,although the reinforcement effect was no longer significant once the thickness exceeded 6 m. 展开更多
关键词 dynamic response earth embankment damage pattern LIQUEFACTION ground improvement
原文传递
Deviation correction strategy for the earth pressure balance shield based on shield–soil interactions 被引量:1
10
作者 Liang TANG Xiangxun KONG +3 位作者 xianzhang ling Yize ZHAO Wenchong TANG Yifan ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第2期225-239,共15页
The control system presently used in shield posture rectification is based on driver experience,which is marginally reliable.The study of the related theory is flawed.Therefore,a decision-making approach for the devia... The control system presently used in shield posture rectification is based on driver experience,which is marginally reliable.The study of the related theory is flawed.Therefore,a decision-making approach for the deviation correction trajectory and posture rectification load for an earth pressure balance(EPB)shield is proposed.A calculation model of posture rectification load of an EPB shield is developed by considering the interactions among the cutter head,shield shell,and ground.The additional position change during the shield attitude correction is highlighted.The posture rectification loads and shield behaviors results can be solved by the proposed method.The influences of the stratum distribution(i.e.,bedrock height in the upper-soft and lower-hard strata)on shield behaviors and posture rectification loads are analyzed.Results indicated that the increase of pitch angle in the upper-soft and lower-hard strata causes a sharp rise in vertical displacement.The bedrock height increases the magnitudes of the required posture rectification moments when hr/D>0.5.For a tunnel with hr/D≤0.5,the variation of hr/D has little effect on the posture rectification moments.Finally,the posture rectifying curves based on the theoretical model are compared with the target ones based on the double circular arc interpolation method.The required results can be obtained regardless of the soil–rock compound stratum distribution.The maximum rectification moment in the rock layer is almost 12.6 times that in the soil layer.Overall,this study provides a valuable reference for moment determination and the trajectory prediction of posture rectification in compound strata. 展开更多
关键词 additional position change deviation correction trajectory earth pressure balance shield mechanical model posture rectification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部