The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zi...The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi- mentary rocks recovered from drill holes that penetrated into the basement of the CHB, Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite 048-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41-2.51 and ~2.5 Ga, respec- tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher REE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain ~2,5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have eHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2,9 Ga, respectively, Therefore, ~2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.展开更多
Lacustrine shale oil resources in China are abundant,with remarkable exploration breakthroughs being achieved.Compared to marine shale oil in North America,efficient exploration of lacustrine shale oil is more difficu...Lacustrine shale oil resources in China are abundant,with remarkable exploration breakthroughs being achieved.Compared to marine shale oil in North America,efficient exploration of lacustrine shale oil is more difficult;thus,selecting favorable layer and optimization zone for horizontal wells is more important.In this study,based on systematic coring of approximately 500 m fine-grained deposits of the Kong 2 Member,combining laboratory tests and log data,source rock geochemistry and reservoir physical properties,the favorable rock fabric facies for oil accumulation was analyzed and classified.First,the dominant lithologic facies,organic facies,and bed combination facies were determined based on mineral composition from logging,total organic content(TOC),and sedimentary structure.Secondly,10 fabric facies were classified by combining these three facies,with 4 fabric facies were found to have high TOC content,high total hydrocarbon,and strong fluorescence features,indicating good shale oil enrichment.Thirdly,the distribution of the upon good fabric facies was identified to be located at the top of the Kong 2 Member,with evidences of seismic resistivity inversion,thermal maturity,structure depth,and strata thickness.And the favorable facies were found to be stably distributed lateral at the area of about 100 km2.High oil flow has been detected at this layer within this area by several wells,including horizontal wells.The exploratory study of fabric facies classification and evaluation provides a new research idea for lacustrine shale oil exploration and effectively promotes breakthroughs in lacustrine shale oil exploration in Bohai Bay Basin.展开更多
Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shal...Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shale oil resources are developed in Member 2 of Kongdian Formation(Ek2)of the Cangdong sag in the Huanghua depression of the Bohai Bay Basin which has complex structure,strong heterogeneity,and large buried depth,thus,the geological characteristic of shale oil accumulation and key exploration technologies are investigated on base of the system coring of 635.8 m,centimeter-level fine description and analysis of over ten thousand samples,therefore,the“four accurate”technologies have been developed,including the accurate selection of sweet spot areas,accurate drilling of sweet spot layers,accurate fracturing of sweet spot layers and accurate measure of fracture-rich sections.The results show that the continental shale strata in Member 2 of Kongdian Formation can be divided into three types:felsic shale,limy dolomitic shale and mixed shale.The Member 2 of Kongdian Formation is characterized by diverse mineral components,abundant laminae,good source rocks and medium thermal evolution degree,tight reservoir with rich micropore and microfractures,high oil saturation and brittle mineral content,indicating good prospect of shale oil exploration.Through sedimentological study,TOC and Ro evaluation,brittle mineral calculation,and seismic fusion inversion,a total of 126 km^(2) of Class I sweet spots in Member 2 of Kongdian Formation was delineated comprehensively,which guides horizontal well deployment(Well GD1701H and Well GD1702H).The drilling rate of sweet spot of these two horizontal wells is up to 96%by tracing thin layer through fine calibration,locating compartment through fine inversion,ensuring window entry through precise positioning,and tracking sweet spot through adjustment.The “one-excellent and five-highs”criterion is used to select perforation points to realize differential designs of fracturing intervals and clusters.Micro-seismic and potentiometry monitoring show that the artificial fractures formed by volumetric fracturing are 300e400 m long and 120 m high,and control a volume of about 0.07 km^(3).The maximum daily oil production of two horizontal wells is 48 t and 66 t respectively to realize the economic exploitation of shale oil reserves controlled by fractures.The shale oil exploration in Member 2 of Kongdian Formation shows that the continental shale oil has great potential of exploration and development,and the above technologies are critical and effective for shale oil efficient recovery.展开更多
基金supported by the Major State Basic Research Program of the People's Republic of China(Grant No.2012CB416600)the National Natural Science Foundation of China(Grant No.40672127)the Key Program of the Ministry of Land and Resources of China(Grant Nos.1212010811033,12120113013700)
文摘The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi- mentary rocks recovered from drill holes that penetrated into the basement of the CHB, Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite 048-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41-2.51 and ~2.5 Ga, respec- tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher REE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain ~2,5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have eHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2,9 Ga, respectively, Therefore, ~2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.
基金supported by PetroChina Major Science and Technology Project“Research and Application of Key Technology for Efficient Reservoir Increase and Stable Production in Dagang Oil and Gas Field”(2018E-11)。
文摘Lacustrine shale oil resources in China are abundant,with remarkable exploration breakthroughs being achieved.Compared to marine shale oil in North America,efficient exploration of lacustrine shale oil is more difficult;thus,selecting favorable layer and optimization zone for horizontal wells is more important.In this study,based on systematic coring of approximately 500 m fine-grained deposits of the Kong 2 Member,combining laboratory tests and log data,source rock geochemistry and reservoir physical properties,the favorable rock fabric facies for oil accumulation was analyzed and classified.First,the dominant lithologic facies,organic facies,and bed combination facies were determined based on mineral composition from logging,total organic content(TOC),and sedimentary structure.Secondly,10 fabric facies were classified by combining these three facies,with 4 fabric facies were found to have high TOC content,high total hydrocarbon,and strong fluorescence features,indicating good shale oil enrichment.Thirdly,the distribution of the upon good fabric facies was identified to be located at the top of the Kong 2 Member,with evidences of seismic resistivity inversion,thermal maturity,structure depth,and strata thickness.And the favorable facies were found to be stably distributed lateral at the area of about 100 km2.High oil flow has been detected at this layer within this area by several wells,including horizontal wells.The exploratory study of fabric facies classification and evaluation provides a new research idea for lacustrine shale oil exploration and effectively promotes breakthroughs in lacustrine shale oil exploration in Bohai Bay Basin.
基金The work was supported by the the PetroChina Science and Technology Major Project“Research and Application of Key Technologies for Increasing Reserves and Stabilizing Production in Dagang Oilfield”(No.2018E-11).
文摘Under the general trend of stepping-up oil and gas exploration and development in China,the unconventional oil and gas resources such as shale oil and gas have become an important alternative.Abundant continental shale oil resources are developed in Member 2 of Kongdian Formation(Ek2)of the Cangdong sag in the Huanghua depression of the Bohai Bay Basin which has complex structure,strong heterogeneity,and large buried depth,thus,the geological characteristic of shale oil accumulation and key exploration technologies are investigated on base of the system coring of 635.8 m,centimeter-level fine description and analysis of over ten thousand samples,therefore,the“four accurate”technologies have been developed,including the accurate selection of sweet spot areas,accurate drilling of sweet spot layers,accurate fracturing of sweet spot layers and accurate measure of fracture-rich sections.The results show that the continental shale strata in Member 2 of Kongdian Formation can be divided into three types:felsic shale,limy dolomitic shale and mixed shale.The Member 2 of Kongdian Formation is characterized by diverse mineral components,abundant laminae,good source rocks and medium thermal evolution degree,tight reservoir with rich micropore and microfractures,high oil saturation and brittle mineral content,indicating good prospect of shale oil exploration.Through sedimentological study,TOC and Ro evaluation,brittle mineral calculation,and seismic fusion inversion,a total of 126 km^(2) of Class I sweet spots in Member 2 of Kongdian Formation was delineated comprehensively,which guides horizontal well deployment(Well GD1701H and Well GD1702H).The drilling rate of sweet spot of these two horizontal wells is up to 96%by tracing thin layer through fine calibration,locating compartment through fine inversion,ensuring window entry through precise positioning,and tracking sweet spot through adjustment.The “one-excellent and five-highs”criterion is used to select perforation points to realize differential designs of fracturing intervals and clusters.Micro-seismic and potentiometry monitoring show that the artificial fractures formed by volumetric fracturing are 300e400 m long and 120 m high,and control a volume of about 0.07 km^(3).The maximum daily oil production of two horizontal wells is 48 t and 66 t respectively to realize the economic exploitation of shale oil reserves controlled by fractures.The shale oil exploration in Member 2 of Kongdian Formation shows that the continental shale oil has great potential of exploration and development,and the above technologies are critical and effective for shale oil efficient recovery.