The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky ...We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.展开更多
GW170817 is the unique gravitational-wave(GW)event associated with the electromagnetic(EM)counterpart GRB 170817A.NGC 4993 is identified as the host galaxy of GW170817/GRB 170817A.In this paper,we focus on the spatial...GW170817 is the unique gravitational-wave(GW)event associated with the electromagnetic(EM)counterpart GRB 170817A.NGC 4993 is identified as the host galaxy of GW170817/GRB 170817A.In this paper,we focus on the spatially resolved properties of NGC 4993.We present the photometric results from the comprehensive data analysis of the high spatial-resolution images in the different optical bands.The morphological analysis reveals that NGC 4993 is a typical early-type galaxy without significant remnants of a major galaxy merger.The spatially resolved stellar population properties of NGC 4993 suggest that the galaxy center has passive evolution with the outskirt formed by gas accretion.We derive the merging rate of the compact object per galaxy by a co-evolution scenario of a supermassive black hole and its host galaxy.If the galaxy formation is at redshift 1.0,the merging rate per galaxy is from 3.2×10^(-4)to 7.7×10^(-5)within the merging decay time from 1.0 to 5.0 Gyr.The results provide vital information for ongoing GW EM counterpart detections.The Hubble space telescope data analysis presented in this paper can be also applied to Chinese Space Station Telescope research in the future.展开更多
The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped w...The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金supported by the National Key Research and Development Program of China(2023YFA1608100)the National Natural Science Foundation of China(NSFC,grant Nos.12090044,11833006 and 12303023)+3 种基金the science research grants from the China Manned Space Project including the CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project CMS-CSST-2021-A09 and No.CMS-CSST-2021-A08.G.C.LHubei Provincial Natural Science Foundation with grant No.2023AFB577the Key Laboratory Fund of Ministry of Education under grant No.QLPL2022P01National Natural Science Foundation of China(NSFC,Grant No.U1731108)。
文摘We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.
基金supported by the National Science Foundation of China(NSFC 11673062)the China Manned Space Project(CMS-CSST-2021-A06)+7 种基金the Yunnan Revitalization Talent Support Program(Yun Ling Scholar Award)support from the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB473)support from the NSFC(11773076 and 12073078)the National Key R&D Program of China(2017YFA0402703)science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-A02,CMS-CSST-2021-A04 and CMS-CSST-2021-A07)support from the NSFC(11733006 and 12273052)support from the NSFC(12173079)support from the NSFC(U1831135)。
文摘GW170817 is the unique gravitational-wave(GW)event associated with the electromagnetic(EM)counterpart GRB 170817A.NGC 4993 is identified as the host galaxy of GW170817/GRB 170817A.In this paper,we focus on the spatially resolved properties of NGC 4993.We present the photometric results from the comprehensive data analysis of the high spatial-resolution images in the different optical bands.The morphological analysis reveals that NGC 4993 is a typical early-type galaxy without significant remnants of a major galaxy merger.The spatially resolved stellar population properties of NGC 4993 suggest that the galaxy center has passive evolution with the outskirt formed by gas accretion.We derive the merging rate of the compact object per galaxy by a co-evolution scenario of a supermassive black hole and its host galaxy.If the galaxy formation is at redshift 1.0,the merging rate per galaxy is from 3.2×10^(-4)to 7.7×10^(-5)within the merging decay time from 1.0 to 5.0 Gyr.The results provide vital information for ongoing GW EM counterpart detections.The Hubble space telescope data analysis presented in this paper can be also applied to Chinese Space Station Telescope research in the future.
基金supported by the Cyrus Chun Ying Tang Foundationsthe Major Science and Technology Project of Qinghai Province(Grant No.2019ZJ-A10)+4 种基金the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(Grant No.B23042)the National Natural Science Foundation of China(Grant Nos.11833007,12073078,12173088,12192221,12192224,12233008,12273036,and 12273113)the Frontier Scientific Research Program of Deep Space Exploration Laboratory(Grant No.2022-QYKYJH-HXYF-012)the support from the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2030002009)Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(Grant No.YSBR-061),respectively。
文摘The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.