In this note, we clarify a relation between block spaces and the Hardy space. We obtain Bq^0.v belong to H^1(S^n-1)+L(ln+L)^1+v(s^n-1),v〉-1,q〉1,Furthermore,if v≥ 0, q 〉 1. we verify that block spaces Rq...In this note, we clarify a relation between block spaces and the Hardy space. We obtain Bq^0.v belong to H^1(S^n-1)+L(ln+L)^1+v(s^n-1),v〉-1,q〉1,Furthermore,if v≥ 0, q 〉 1. we verify that block spaces Rq^0.v(S^n-1)are proper subspaces of H1 (S^n- 1),展开更多
基金Project supported by 973-project(G1999075105),NSFC(G10271107),RFDP(20030335019)and ZJNSF(RC97017)
文摘In this note, we clarify a relation between block spaces and the Hardy space. We obtain Bq^0.v belong to H^1(S^n-1)+L(ln+L)^1+v(s^n-1),v〉-1,q〉1,Furthermore,if v≥ 0, q 〉 1. we verify that block spaces Rq^0.v(S^n-1)are proper subspaces of H1 (S^n- 1),