This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fr...This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H. At last, we prove the finiteness of fractal dimension of random attractors.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11571245,11771444,11871138 and11871049)funding of V.C.&V.R.Key Lab of Sichuan Province+2 种基金the Yue Qi Young Scholar ProjectChina University of Mining and Technology(Beijing)China Scholarship Council(CSC)。
文摘This paper considers the dynamical behavior of solutions for non-autonomous stochastic fractional Ginzburg–Landau equations driven by additive noise with α∈(0, 1). First, we give some conditions for bounding the fractal dimension of a random invariant set of non-autonomous random dynamical system. Second, we derive uniform estimates of solutions and establish the existence and uniqueness of tempered pullback random attractors for the equation in H. At last, we prove the finiteness of fractal dimension of random attractors.