In this paper, via constructing special matrices, we will show that there exists a differential calculus on Uθ(2), where θ is an irrational number. Then using the above results, we shall discuss the properties of ...In this paper, via constructing special matrices, we will show that there exists a differential calculus on Uθ(2), where θ is an irrational number. Then using the above results, we shall discuss the properties of infinitesimal generators of corepresentations of Uθ(2). And in the final, we shall discuss its irreducible corepresentations and give the Peter-Weyl theorem explicitly for compact quantum group Uθ(2).展开更多
In this paper, we first prove that the θ-deformation Uθ(2) of U(2) constructed by Connes and Violette is our special case of the quantum group Uq(2) constructed in our previous paper. Then we will show that th...In this paper, we first prove that the θ-deformation Uθ(2) of U(2) constructed by Connes and Violette is our special case of the quantum group Uq(2) constructed in our previous paper. Then we will show that the set of truces on the C^* -algebra Uθ, θ irrational, is determined by the set of the truces on a subalgebra of Uθ.展开更多
In this paper,we generalize the Takesaki-Takai duality theorem in Hilbert C~*-modules; that is to say,if (H,V,U) is a Kac-system,where H is a Hilbert space,V is a multiplicative unitary operator on H(?)H and U is a un...In this paper,we generalize the Takesaki-Takai duality theorem in Hilbert C~*-modules; that is to say,if (H,V,U) is a Kac-system,where H is a Hilbert space,V is a multiplicative unitary operator on H(?)H and U is a unitary operator on H,and if E is an (?)-compatible Hilbert (?)-module, then E×(?)×(?)K(H),where K(H) is the set of all compact operators on H,and (?) and (?) are Hopf C~*-algebras corresponding to the Kac-system (H,V,U).展开更多
文摘In this paper, via constructing special matrices, we will show that there exists a differential calculus on Uθ(2), where θ is an irrational number. Then using the above results, we shall discuss the properties of infinitesimal generators of corepresentations of Uθ(2). And in the final, we shall discuss its irreducible corepresentations and give the Peter-Weyl theorem explicitly for compact quantum group Uθ(2).
文摘In this paper, we first prove that the θ-deformation Uθ(2) of U(2) constructed by Connes and Violette is our special case of the quantum group Uq(2) constructed in our previous paper. Then we will show that the set of truces on the C^* -algebra Uθ, θ irrational, is determined by the set of the truces on a subalgebra of Uθ.
基金Supported by NSF 10301004,NSF 10171098Yantai University PHD Foundation SX03B14
文摘In this paper,we generalize the Takesaki-Takai duality theorem in Hilbert C~*-modules; that is to say,if (H,V,U) is a Kac-system,where H is a Hilbert space,V is a multiplicative unitary operator on H(?)H and U is a unitary operator on H,and if E is an (?)-compatible Hilbert (?)-module, then E×(?)×(?)K(H),where K(H) is the set of all compact operators on H,and (?) and (?) are Hopf C~*-algebras corresponding to the Kac-system (H,V,U).