This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. I...This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV's movement characteristic basically.展开更多
In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of muki-input multi-output (MIMO) nonlinear systems with completely unknown control d...In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of muki-input multi-output (MIMO) nonlinear systems with completely unknown control directions, unknown dynamic disturbances, unmodeled dynamics, and uncertainties with time-varying delay. Using the Nussbaum function properties, the unknown control directions are dealt with. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown upper bound functions of the time-varying delay uncertainties are compensated. The proposed control scheme does not need to calculate the integral of the delayed state functions. Using Young's inequality and RBFNNs, the assumption of unmodeled dynamics is relaxed. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded.展开更多
文摘This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV's voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV's movement characteristic basically.
基金supported by National Natural Science Foundation of China(No.61174046)
文摘In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of muki-input multi-output (MIMO) nonlinear systems with completely unknown control directions, unknown dynamic disturbances, unmodeled dynamics, and uncertainties with time-varying delay. Using the Nussbaum function properties, the unknown control directions are dealt with. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown upper bound functions of the time-varying delay uncertainties are compensated. The proposed control scheme does not need to calculate the integral of the delayed state functions. Using Young's inequality and RBFNNs, the assumption of unmodeled dynamics is relaxed. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded.