Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Mor...Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Morphological parameters included root length,surface area,volume and count of lateral roots,as well as fine(diameter<0.2 mm) and thick(diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K,but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots(diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology,higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots. K deficiency affected not only the root morphology,but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain the developed root architecture to adapt to the low K growth medium.展开更多
Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil ...Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.展开更多
Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reac...Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reach a concentration range of 0-16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5-1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (〈0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (〈1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1-16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination.展开更多
The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) releas...The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.展开更多
The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii See...The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii Seemen, Thalia dealbata, Vetiveria zizanioides, and Phragmites sp., sequentially through pyrolysis at 500 °C in a N2 environment, and under different temperatures(500, 600, and 700 °C) in a CO2 environment. The cation exchange capacity and specific surface area of biochar varied with both plant species and pyrolysis temperature. The magnesium(Mg) content of biochar derived from T. dealbata(TC) was obviously higher than that of the other plant biochars. This biochar also had the highest sorption capacity for phosphate and ammonium. In terms of biomass yields, adsorption capacity, and energy cost, T. dealbata biochar produced at 600 °C(TC600) is the most promising sorbent for removing contaminants(N and P) from aqueous solution. Therefore, T. dealbata appears to be the best candidate for phytoremediation application as its biomass can make a good biochar for environmental cleaning.展开更多
The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils.Organic acid has been suggested to be involved in toxic metall...The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils.Organic acid has been suggested to be involved in toxic metallic element tolerance,translocation,and accumulation in plants.The impact of exogenous organic acids on cadmium(Cd) uptake and translocation in the zinc(Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study.By the addition of organic acids,short-term(2 h) root uptake of 109 Cd increased significantly,and higher 109 Cd contents in roots and shoots were noted 24 h after uptake,when compared to controls.About 85% of the 109 Cd taken up was distributed to the shoots in plants with citric acid(CA) treatments,as compared with 75% within controls.No such effect was observed for tartaric acid(TA).Reduced growth under Cd stress was significantly alleviated by low CA.Long-term application of the two organic acids both resulted in elevated Cd in plants,but the effects varied with exposure time and levels.The results imply that CA may be involved in the processes of Cd uptake,translocation and tolerance in S.alfredii,whereas the impact of TA is mainly on the root uptake of Cd.展开更多
The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02...The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA) levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.展开更多
The simultaneous sorption behavior and characteristics of cadmium (Cd) and sulfamethoxazole (SMX) on rice straw biochar were investigated. Isotherms of Cd and SMX were well modeled by the Langmuir equation (R2 >0.9...The simultaneous sorption behavior and characteristics of cadmium (Cd) and sulfamethoxazole (SMX) on rice straw biochar were investigated. Isotherms of Cd and SMX were well modeled by the Langmuir equation (R2 >0.95). The calculated maximum adsorption parameter (Q) of Cd was similar in single and binary systems (34129.69 and 35919.54 mg/kg, respectively). However, the Q of SMX in a binary system (9182.74 mg/kg) was much higher than that in a single system (1827.82 mg/kg). The presence of Cd significantly promoted the sorption of SMX on rice straw biochar. When the pH ranged from 3 to 7.5, the sorption of Cd had the characteristics of a parabola pattern with maximum adsorption at pH 5, while the adsorption quantity of SMX decreased with increasing pH, with maximum adsorption at pH 3. The amount of SMX adsorbed on biochar was positively correlated with the surface area of the biochar, and the maximum adsorption occurred with d 250 biochar (biochar with a diameter of 150-250 μm). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that the removal of Cd and SMX by rice straw biochar may be attributed to precipitation and the formation of surface complexes between Cd or SMX and carboxyl or hydroxyl groups. The results of this study indicate that rice straw biochar has the potential for simultaneous removal of Cd and SMX from co-contaminated water.展开更多
Root morphology and Zn^2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux t...Root morphology and Zn^2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn^2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500μmol/L Zn^2+. The concentrations of Zn^2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for ^65Zn^2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for ^65Zn^2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.展开更多
Improving the efficacy of phytoextraction is critical for its successful application in metal contaminated soils. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy ...Improving the efficacy of phytoextraction is critical for its successful application in metal contaminated soils. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. This study assessed the effects of di-hydrogen phosphates (KH2PO4, Ca(H2PO4)2, NaH2PO4 and NH4H2PO4) application at three levels (22, 88 and 352 mg P/kg soil) on Sedum alfredii growth and metal uptake by three consecutive harvests on aged and Zn/Cd combined contaminated paddy soil. The addition of phosphates (P) significantly increased the amount of Zn taken up by S. alfredii due to increased shoot Zn concentration and dry matter yield (DMY) (P 〈 0.05). The highest phytoextraction of Zn and Cd was observed in KH2PO4 and NH4H2PO4 treatment at 352 mg P/kg soil. The amount of Zn removed by phytoextraction increased in the order of 1st clipping 〈 2nd clipping 〈 3rd clipping, and for Cd extraction the order was 2nd clipping 〈 1st clipping 〈 3rd clipping. These results indicate that the application of P fertilizers coupled with multiple cuttings can enhance the removal of Zn and Cd from contaminated soils by S. alfredii, thus shortening the time needed for accomplishing remediation goals.展开更多
The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain.In this study,both pot-culture and field experim...The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain.In this study,both pot-culture and field experiments were conducted to identify and screen out cadmium pollution-safe cultivars (Cd-PSCs) from 50 pakchoi (Brassica rapa L.ssp.chinensis) cultivars for food safety.When treated with 1.0 or 2.5 mg/kg Cd,most of the pakchoi cultivars (>70%) showed greater or similar shoot biomass when compared with the control.This result indicates that pakchoi has a considerable tolerance to soil Cd stress.Cd concentrations in the shoot varied significantly (P<0.05) between cultivars:in two Cd treatments (1.0 and 2.5 mg/kg),the average values were 0.074 and 0.175 mg/kg fresh weight (FW),respectively.Cd concentrations in the shoots of 14 pakchoi cultivars were lower than 0.05 mg/kg FW.In pot-culture experiments,both enrichment factors (EFs) and translocation factors (TFs) of six pakchoi cultivars were lower than 1.0.The field studies further confirmed that the Hangzhouyoudonger,Aijiaoheiye 333,and Zaoshenghuajing cultivars are Cd-PSCs,and are therefore suitable for growth in low Cd-contaminated soils (≤1.2 mg/kg) without any risk to food safety.展开更多
In the current study,caffeic acid was an important metabolite in the highly copper-tolerant plant Elsholtzia splendens.Preparation and purification of caffeic acid were performed on the dried biomass of the plants by ...In the current study,caffeic acid was an important metabolite in the highly copper-tolerant plant Elsholtzia splendens.Preparation and purification of caffeic acid were performed on the dried biomass of the plants by means of sonication/ethanol extraction,followed by purification using a macroporous resin (D101 type) column and silica gel chromatography.The faint-yellow caffeic acid product was yielded with a purity of 98.46%,and it was chemically identified from spectra of Fourier transform infrared spectroscopy (FTIR),proton nuclear magnetic resonance (1 H NMR)/carbon nuclear magnetic resonance (13 C NMR),and electrospray ionization mass spectrometry (ESI-MS).Caffeic acid is a possible product from the post-harvest processing of Elsholtzia splendens biomass.展开更多
Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study com- pares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones g...Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study com- pares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 pmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu.展开更多
We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfred...We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance.展开更多
The active metabolite in the post-harvested biomass of zinc(Zn) and cadmium(Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China.The current study demonstrates that a salidrosid...The active metabolite in the post-harvested biomass of zinc(Zn) and cadmium(Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China.The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S.alfredii biomass by means of sonication/ethanol extraction and macroporous resin column(AB-8 type) isolation.The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards.展开更多
The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain. In this study, both pot-culture and field exper...The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain. In this study, both pot-culture and field experiments were conducted to identify and screen out cadmium pollution-safe cultivars (Cd-PSCs) from 50 pakchoi (Brassica rapa L. ssp. chinensis) cultivars for food safety. When treated with 1.0 or 2.5 mg/kg Cd, most of the pakchoi cultivars (>70%) showed greater or similar shoot biomass when compared with the control. This result indicates that pakchoi has a considerable tolerance to soil Cd stress. Cd concentrations in the shoot varied significantly (P<0.05) between cultivars: in two Cd treatments (1.0 and 2.5 mg/kg), the average values were 0.074 and 0.175 mg/kg fresh weight (FW), respectively. Cd concentrations in the shoots of 14 pakchoi cultivars were lower than 0.05 mg/kg FW. In pot-culture experiments, both enrichment factors (EFs) and translocation factors (TFs) of six pakchoi cultivars were lower than 1.0. The field studies further confirmed that the Hangzhouyoudonger, Aijiaoheiye 333, and Zaoshenghuajing cultivars are Cd-PSCs, and are therefore suitable for growth in low Cd-contaminated soils (≤1.2 mg/kg) without any risk to food safety.展开更多
Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the ...Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (〈0.71 mg/kg dry weight) and nitrate (〈3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with mini- mized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, mini- mizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils.展开更多
Zinc(Zn) deficiency and water scarcity are major challenges in rice(Oryza sativa L.) under an intensive rice production system.This study aims to investigate the impact of water-saving management and different Zn ...Zinc(Zn) deficiency and water scarcity are major challenges in rice(Oryza sativa L.) under an intensive rice production system.This study aims to investigate the impact of water-saving management and different Zn fertilization source(ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain.Different water managements,continuous flooding(CF),and alternate wetting and drying(AWD) were applied during the rice growing season.Compared with CF,the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice.Grain yield of genotypes(Nipponbare and Jiaxing27),on the average,was increased by 11.4%,and grain Zn concentration by 3.9% when compared with those under a CF regime.Zn fertilization significantly increased Zn density in polished rice,with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA,especially under an AWD regime.Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization.The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.展开更多
A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambos...A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg(CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.展开更多
基金Project supported by the Program for Changjiang Scholars andInnovative Research Team in University of China (No. IRT0536)the National Basic Research Program (973) of China (No. 30740011)
文摘Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Morphological parameters included root length,surface area,volume and count of lateral roots,as well as fine(diameter<0.2 mm) and thick(diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K,but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots(diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology,higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots. K deficiency affected not only the root morphology,but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain the developed root architecture to adapt to the low K growth medium.
基金Project supported by the Higher Education Commission,Government of Pakistan for the faculty training under the R & D Project"Strengthening Department of Soil Science and Soil and Water Conservation" at the University of Florida,USA,a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in partthe Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536),China
文摘Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB410804)the National Natural Science Founda-tion of China (No. 20577044)the Program for Changjiang Scholars and Innovative Research Team in Higher Education,China
文摘Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reach a concentration range of 0-16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5-1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (〈0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (〈1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1-16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination.
基金the International Cooperative Project from the Ministry of Science and Technology of China (No. 2006DFA31030)the Bureau of Science and Technology of Zhejiang Province (No. 2006C32019)+1 种基金 HarvestPlus-China (No. 8022)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0536)
文摘The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.
基金supported by the International Cooperative Project from the Ministry of Science and Technology of China(No.2010DFB33960)the National Key Technology R&D Program of China(No.2012BAC17B02)+1 种基金the Zhejiang Youth Creative Program(No.2012QNA6004)the Key Project from Zhejiang Science and Technology Bureau(No.2011C13015),China
文摘The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii Seemen, Thalia dealbata, Vetiveria zizanioides, and Phragmites sp., sequentially through pyrolysis at 500 °C in a N2 environment, and under different temperatures(500, 600, and 700 °C) in a CO2 environment. The cation exchange capacity and specific surface area of biochar varied with both plant species and pyrolysis temperature. The magnesium(Mg) content of biochar derived from T. dealbata(TC) was obviously higher than that of the other plant biochars. This biochar also had the highest sorption capacity for phosphate and ammonium. In terms of biomass yields, adsorption capacity, and energy cost, T. dealbata biochar produced at 600 °C(TC600) is the most promising sorbent for removing contaminants(N and P) from aqueous solution. Therefore, T. dealbata appears to be the best candidate for phytoremediation application as its biomass can make a good biochar for environmental cleaning.
基金Project supported by the National Natural Science Foundation of China(No.31000935)he Fundamental Research Funds for the Central Universities(No.2012FZA6008)the Department of Science & Technology of Zhejiang Province(No.2011C22077),China
文摘The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils.Organic acid has been suggested to be involved in toxic metallic element tolerance,translocation,and accumulation in plants.The impact of exogenous organic acids on cadmium(Cd) uptake and translocation in the zinc(Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study.By the addition of organic acids,short-term(2 h) root uptake of 109 Cd increased significantly,and higher 109 Cd contents in roots and shoots were noted 24 h after uptake,when compared to controls.About 85% of the 109 Cd taken up was distributed to the shoots in plants with citric acid(CA) treatments,as compared with 75% within controls.No such effect was observed for tartaric acid(TA).Reduced growth under Cd stress was significantly alleviated by low CA.Long-term application of the two organic acids both resulted in elevated Cd in plants,but the effects varied with exposure time and levels.The results imply that CA may be involved in the processes of Cd uptake,translocation and tolerance in S.alfredii,whereas the impact of TA is mainly on the root uptake of Cd.
基金the National Natural Science Foundation of China (20477039)the Program for Changjiang Scholars and Innovative Research Team inUniversity (IRT0536)the State Key Basic Research and Develop-ment Plan of China from the Science and Technology Ministry of China(2002CB410804).
文摘The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA) levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.
基金supported by the National Key Technology R&D Program of China (No. 2012BAC17B04)the Fundamental Research Funds for the Central Universities, China
文摘The simultaneous sorption behavior and characteristics of cadmium (Cd) and sulfamethoxazole (SMX) on rice straw biochar were investigated. Isotherms of Cd and SMX were well modeled by the Langmuir equation (R2 >0.95). The calculated maximum adsorption parameter (Q) of Cd was similar in single and binary systems (34129.69 and 35919.54 mg/kg, respectively). However, the Q of SMX in a binary system (9182.74 mg/kg) was much higher than that in a single system (1827.82 mg/kg). The presence of Cd significantly promoted the sorption of SMX on rice straw biochar. When the pH ranged from 3 to 7.5, the sorption of Cd had the characteristics of a parabola pattern with maximum adsorption at pH 5, while the adsorption quantity of SMX decreased with increasing pH, with maximum adsorption at pH 3. The amount of SMX adsorbed on biochar was positively correlated with the surface area of the biochar, and the maximum adsorption occurred with d 250 biochar (biochar with a diameter of 150-250 μm). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that the removal of Cd and SMX by rice straw biochar may be attributed to precipitation and the formation of surface complexes between Cd or SMX and carboxyl or hydroxyl groups. The results of this study indicate that rice straw biochar has the potential for simultaneous removal of Cd and SMX from co-contaminated water.
文摘Root morphology and Zn^2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn^2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500μmol/L Zn^2+. The concentrations of Zn^2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for ^65Zn^2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for ^65Zn^2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.
基金supported by the National Natural Science Foundation of China (No. 30630046, 40701074)the National High Technology Research and Development Program of China (No. 2009AA06Z316)+1 种基金the Ministry of Environmental Protection Program of China(No. 2011467057)the Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation (7th Winner, 2010)
文摘Improving the efficacy of phytoextraction is critical for its successful application in metal contaminated soils. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. This study assessed the effects of di-hydrogen phosphates (KH2PO4, Ca(H2PO4)2, NaH2PO4 and NH4H2PO4) application at three levels (22, 88 and 352 mg P/kg soil) on Sedum alfredii growth and metal uptake by three consecutive harvests on aged and Zn/Cd combined contaminated paddy soil. The addition of phosphates (P) significantly increased the amount of Zn taken up by S. alfredii due to increased shoot Zn concentration and dry matter yield (DMY) (P 〈 0.05). The highest phytoextraction of Zn and Cd was observed in KH2PO4 and NH4H2PO4 treatment at 352 mg P/kg soil. The amount of Zn removed by phytoextraction increased in the order of 1st clipping 〈 2nd clipping 〈 3rd clipping, and for Cd extraction the order was 2nd clipping 〈 1st clipping 〈 3rd clipping. These results indicate that the application of P fertilizers coupled with multiple cuttings can enhance the removal of Zn and Cd from contaminated soils by S. alfredii, thus shortening the time needed for accomplishing remediation goals.
基金Project supported by the National High-Tech R & D Program (863) of China (No.2009AA06Z316)the Science and Technology Commission of Zhejiang Province (No.2008C33047)the Fundamental Research Funds for the Central Universities,China
文摘The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain.In this study,both pot-culture and field experiments were conducted to identify and screen out cadmium pollution-safe cultivars (Cd-PSCs) from 50 pakchoi (Brassica rapa L.ssp.chinensis) cultivars for food safety.When treated with 1.0 or 2.5 mg/kg Cd,most of the pakchoi cultivars (>70%) showed greater or similar shoot biomass when compared with the control.This result indicates that pakchoi has a considerable tolerance to soil Cd stress.Cd concentrations in the shoot varied significantly (P<0.05) between cultivars:in two Cd treatments (1.0 and 2.5 mg/kg),the average values were 0.074 and 0.175 mg/kg fresh weight (FW),respectively.Cd concentrations in the shoots of 14 pakchoi cultivars were lower than 0.05 mg/kg FW.In pot-culture experiments,both enrichment factors (EFs) and translocation factors (TFs) of six pakchoi cultivars were lower than 1.0.The field studies further confirmed that the Hangzhouyoudonger,Aijiaoheiye 333,and Zaoshenghuajing cultivars are Cd-PSCs,and are therefore suitable for growth in low Cd-contaminated soils (≤1.2 mg/kg) without any risk to food safety.
基金Project supported by the Zhejiang Provincial Qianjiang Talents for Science and Technology (No.2011R10026)the Education Department of Zhejiang Province (No.Y201016563)+1 种基金the Research Funds from State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (No.2009490711)the Fundamental Research Funds for the Central Universities,China
文摘In the current study,caffeic acid was an important metabolite in the highly copper-tolerant plant Elsholtzia splendens.Preparation and purification of caffeic acid were performed on the dried biomass of the plants by means of sonication/ethanol extraction,followed by purification using a macroporous resin (D101 type) column and silica gel chromatography.The faint-yellow caffeic acid product was yielded with a purity of 98.46%,and it was chemically identified from spectra of Fourier transform infrared spectroscopy (FTIR),proton nuclear magnetic resonance (1 H NMR)/carbon nuclear magnetic resonance (13 C NMR),and electrospray ionization mass spectrometry (ESI-MS).Caffeic acid is a possible product from the post-harvest processing of Elsholtzia splendens biomass.
基金Project supported by the National Natural Science Foundation of China (No. 31100513), the Key International Cooperative Project of CN-USA from the Ministry of Science and Technology of China (No. 2010DFB 33960), the Key Project of Ningbo Science and Technology Bureau of Zhejiang Province (No. 2012C10003), the Key Project of the Ministry of Science and Technology of China (No. 2012BAC17B02), and the Fundamental Research Funds for the Central Universities, China
文摘Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study com- pares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 pmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu.
基金supported by the National Natural Science Foundation of China (No. 30630046)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z386)the Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0536)
文摘We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance.
基金Project supported by the Education Department of Zhejiang Province(No. Y201016563)the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (No. 2009490711)the Zhejiang Provincial Qianjiang Talents for Science and Technology(No. 2011R10026),China
文摘The active metabolite in the post-harvested biomass of zinc(Zn) and cadmium(Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China.The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S.alfredii biomass by means of sonication/ethanol extraction and macroporous resin column(AB-8 type) isolation.The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards.
文摘The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain. In this study, both pot-culture and field experiments were conducted to identify and screen out cadmium pollution-safe cultivars (Cd-PSCs) from 50 pakchoi (Brassica rapa L. ssp. chinensis) cultivars for food safety. When treated with 1.0 or 2.5 mg/kg Cd, most of the pakchoi cultivars (>70%) showed greater or similar shoot biomass when compared with the control. This result indicates that pakchoi has a considerable tolerance to soil Cd stress. Cd concentrations in the shoot varied significantly (P<0.05) between cultivars: in two Cd treatments (1.0 and 2.5 mg/kg), the average values were 0.074 and 0.175 mg/kg fresh weight (FW), respectively. Cd concentrations in the shoots of 14 pakchoi cultivars were lower than 0.05 mg/kg FW. In pot-culture experiments, both enrichment factors (EFs) and translocation factors (TFs) of six pakchoi cultivars were lower than 1.0. The field studies further confirmed that the Hangzhouyoudonger, Aijiaoheiye 333, and Zaoshenghuajing cultivars are Cd-PSCs, and are therefore suitable for growth in low Cd-contaminated soils (≤1.2 mg/kg) without any risk to food safety.
基金Project supported by the Key Projects from Ministry of Science and Technology of China(No.2016YFD0800805)the Zhejiang Provincial Science and Technology Bureau(Nos.2015C02011-3 and2015C03020-2)the Fundamental Research Funds for the Central University,China
文摘Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (〈0.71 mg/kg dry weight) and nitrate (〈3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with mini- mized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, mini- mizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils.
基金supported by the HarvestPlus-China Program(No.8271)the Fundamental Research Funds for the Central Universities(No.2013FZA6005)the National Key Technology R&D Program of China(No.2012BAC17B02)
文摘Zinc(Zn) deficiency and water scarcity are major challenges in rice(Oryza sativa L.) under an intensive rice production system.This study aims to investigate the impact of water-saving management and different Zn fertilization source(ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain.Different water managements,continuous flooding(CF),and alternate wetting and drying(AWD) were applied during the rice growing season.Compared with CF,the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice.Grain yield of genotypes(Nipponbare and Jiaxing27),on the average,was increased by 11.4%,and grain Zn concentration by 3.9% when compared with those under a CF regime.Zn fertilization significantly increased Zn density in polished rice,with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA,especially under an AWD regime.Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization.The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.
基金supported by the Ministry of Environmental Protection of China(No.2011467057)the Fundamental Research Funds for the Central Universities of China
文摘A pot culture experiment was carried out to investigate the accumulation properties of mercury(Hg) in rice grain and cabbage grown in seven soil types(Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg(CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.