In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M p...In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M phase which was evidenced by cell cycle analysis and the increased phosphorylation of Cdc2 at its inactive Tyr-15 site. In addition, the results showed that metavanadate can induce reactive oxygen species (ROS) elevation and decrease the level of Cdc25C. This process can be rescued by an antioxidant, N-acetyl cysteine. In conclusion, the results demonstrate that metavanadate can inhibit cell proliferation via cell cycle arrest at G2/M phase in DU145 ceils. Metavanadate-induced ROS formation may play an important role in this process by mediating the degradation of Cdc25C.展开更多
基金National Natural Science Foundation of China (Grant No.20871008 and J0830836)
文摘In the present study, the effects of metavanadate on the human prostate cancer cell line DU145 and the underlying mechanism were investigated. The results showed that metavanadate can cause cell cycle arrest at G2/M phase which was evidenced by cell cycle analysis and the increased phosphorylation of Cdc2 at its inactive Tyr-15 site. In addition, the results showed that metavanadate can induce reactive oxygen species (ROS) elevation and decrease the level of Cdc25C. This process can be rescued by an antioxidant, N-acetyl cysteine. In conclusion, the results demonstrate that metavanadate can inhibit cell proliferation via cell cycle arrest at G2/M phase in DU145 ceils. Metavanadate-induced ROS formation may play an important role in this process by mediating the degradation of Cdc25C.