Assembly of the top-down graphene units mostly results in 3D porous structure with randomly organized pores.The direct bottom-up synthesis of macroscopic 2D graphene sheets with organized pores are long sought in mate...Assembly of the top-down graphene units mostly results in 3D porous structure with randomly organized pores.The direct bottom-up synthesis of macroscopic 2D graphene sheets with organized pores are long sought in materials chemistry field,but rarely achieved.Herein,we present a self-catalysisassisted bottom-up route usingL-glutamic acid and iron chloride as starting materials for the fabrication of the millimeter-sized few-layer graphene sheets with aligned porous channels parallel to the 2D direction.The amino-and carboxyl-functional groups inL-glutamic acid can coordinate with iron cations,thus allowing an atomic dispersion of iron cations.The pyrolysis thus initiated the growth of graphene catalyzed by in-situ generated iron nanoparticles,and a dynamic flow of iron nanoparticles eventually led to the formation of millimeter-sized few-layer graphene sheets with aligned channels(60-85 nm in diameter).Used as anodes in lithium-ion batteries,these graphene sheets showed a good rate capability(142 m A h g^(-1) at 2 A g^(-1))and high capacity retention of 93%at 2 A g^(-1) after 1200 cycles.Kinetic analysis revealed that lithium ions storage was dominated by diffusion behavior and capacitive behavior together,in that graphene sheets with aligned channels could accelerate electron transfer and shorten lithium ions transport pathway.This work provides a novel approach to prepare unique porous graphene materials with specific structure for energy storage.展开更多
基金supported by the National Natural Science Foundation of China(No.21776041 and No.21875028)the Cheung Kong Scholars Programme of China(T2015036)。
文摘Assembly of the top-down graphene units mostly results in 3D porous structure with randomly organized pores.The direct bottom-up synthesis of macroscopic 2D graphene sheets with organized pores are long sought in materials chemistry field,but rarely achieved.Herein,we present a self-catalysisassisted bottom-up route usingL-glutamic acid and iron chloride as starting materials for the fabrication of the millimeter-sized few-layer graphene sheets with aligned porous channels parallel to the 2D direction.The amino-and carboxyl-functional groups inL-glutamic acid can coordinate with iron cations,thus allowing an atomic dispersion of iron cations.The pyrolysis thus initiated the growth of graphene catalyzed by in-situ generated iron nanoparticles,and a dynamic flow of iron nanoparticles eventually led to the formation of millimeter-sized few-layer graphene sheets with aligned channels(60-85 nm in diameter).Used as anodes in lithium-ion batteries,these graphene sheets showed a good rate capability(142 m A h g^(-1) at 2 A g^(-1))and high capacity retention of 93%at 2 A g^(-1) after 1200 cycles.Kinetic analysis revealed that lithium ions storage was dominated by diffusion behavior and capacitive behavior together,in that graphene sheets with aligned channels could accelerate electron transfer and shorten lithium ions transport pathway.This work provides a novel approach to prepare unique porous graphene materials with specific structure for energy storage.