Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos ba...Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.展开更多
Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living cells. Many attractive features of living cells have already been abstracted as operators to impr...Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living cells. Many attractive features of living cells have already been abstracted as operators to improve the performance of algorithms. In this work, inspired by the function of biological neuron cells storing information, we consider a memory mechanism by introducing memory modules into a membrane algorithm. The framework of the algorithm consists of two kinds of modules (computation modules and memory modules), both of which are arranged in a ring neighborhood topology. They can store and process information, and exchange information with each other. We test our method on a knapsack problem to demonstrate its feasibility and effectiveness. During the process of approaching the optimum solution, feasible solutions are evolved by rewriting rules in each module, and the information transfers according to directions defined by communication rules. Simulation results showed that the performance of membrane algorithms with memory cells is superior to that of algorithms without memory cells for solving a knapsack problem. Furthermore, the memory mechanism can prevent premature convergence and increase the possibility of finding a global solution.展开更多
基金supported in part by the National Natural Science Foundation under Grant No.61070003,No.61272020,and No.61071128Zhejiang Provincial Natural Science Foundation under Grant No.R1090052 and No.Y1101184
文摘Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.
基金Project supported by the National Natural Science Foundation of China(Nos. 61033003, 91130034, 61100145, 60903105, and 61272071)the PhD Programs Foundation of the Ministry of Education of China(Nos. 20100142110072 and 2012014213008)the Natural Science Foundation of Hubei Province, China (No. 2011CDA027)
文摘Membrane algorithms are a class of distributed and parallel algorithms inspired by the structure and behavior of living cells. Many attractive features of living cells have already been abstracted as operators to improve the performance of algorithms. In this work, inspired by the function of biological neuron cells storing information, we consider a memory mechanism by introducing memory modules into a membrane algorithm. The framework of the algorithm consists of two kinds of modules (computation modules and memory modules), both of which are arranged in a ring neighborhood topology. They can store and process information, and exchange information with each other. We test our method on a knapsack problem to demonstrate its feasibility and effectiveness. During the process of approaching the optimum solution, feasible solutions are evolved by rewriting rules in each module, and the information transfers according to directions defined by communication rules. Simulation results showed that the performance of membrane algorithms with memory cells is superior to that of algorithms without memory cells for solving a knapsack problem. Furthermore, the memory mechanism can prevent premature convergence and increase the possibility of finding a global solution.