Based on a conventional torsion pendulum,we develop a forced oscillation viscometer with ultra-high viscosity sensitivity of 2×10^(-7)Pa·s working at frequencies near the resonance.The viscosity is achieve...Based on a conventional torsion pendulum,we develop a forced oscillation viscometer with ultra-high viscosity sensitivity of 2×10^(-7)Pa·s working at frequencies near the resonance.The viscosity is achieved by exploiting the phase lag for the angle displacement behind the torque,instead of the resonant curve,i.e.,the variation of angle displacement amplitude versus frequency.The general formula for the measurement of the visco-elasticit.y of complex fluids is also presented.With such precision it is easy to measure tiny change in viscosity result from circumstantial influences.Deionized water and two kinds of NaCl aqueous solutions are chosen to demonstrate the performance of our home-made torsion pendulum-based viscometer.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10974259,11274391 and 11104357the Science and Technology Planning Project of Guangdong Province under Grant No 20128060100003the Fundamental Research Funds for the Central Universities under Grant Nos 121gpy36 and 09lgpy29
文摘Based on a conventional torsion pendulum,we develop a forced oscillation viscometer with ultra-high viscosity sensitivity of 2×10^(-7)Pa·s working at frequencies near the resonance.The viscosity is achieved by exploiting the phase lag for the angle displacement behind the torque,instead of the resonant curve,i.e.,the variation of angle displacement amplitude versus frequency.The general formula for the measurement of the visco-elasticit.y of complex fluids is also presented.With such precision it is easy to measure tiny change in viscosity result from circumstantial influences.Deionized water and two kinds of NaCl aqueous solutions are chosen to demonstrate the performance of our home-made torsion pendulum-based viscometer.