Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,cons...Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.展开更多
The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration m...The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment.A highest power factor of 228.88μW·m;·K;was obtained at 331 K for the cold-pressed rGO/Ag;Se NW composite film with 0.01 wt%r GO.The rGO/Ag;Se NW composite film revealed superior flexibility as the power factor retained 94.62%after bending for 500 times with a bending radius of 4 mm,which might be due to the interwoven network structures of Ag;Se NWs and pliability of r GO as well as nylon membrane.These results demonstrated that the GO/Ag;Se NW composite film has a potential for preparation of flexible thermoelectric devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51762018,52073128,and 22065013)the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20202ACBL204005,20202ACBL214005,and 20203AEI003)。
文摘Poly(3,4-ethylenedioxythiophene)(PEDOT)has proved its quite competitive thermoelectric properties in flexible electronics with its excellent electrical and mechanical properties.Since the early discovery of PEDOT,considerable experimental progress has been achieved in optimizing and improving the thermoelectric properties as a promising organic thermoelectric material(OTE).Among them,theoretical research has made significant contributions to its development.Here the basic physics of conductive PEDOT are reviewed based on the combination of theory and experiment.The purpose is to provide a new insight into the development of PEDOT,so as to effectively design and preparation of advanced thermoelectric PEDOT material in the future.
基金supported by the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(Grant No.TP2020068)Shanghai Innovation Action Plan Project(Grant No.17090503600)Shanghai Sailing Program(Grant No.20YF1447300)。
文摘The reduced graphene oxide/silver selenide nanowire(rGO/Ag;Se NW)composite powders were fabricated via a wet chemical approach,and then flexible rGO/Ag;Se NW composite film was prepared by a facile vacuum filtration method combined with cold-pressing treatment.A highest power factor of 228.88μW·m;·K;was obtained at 331 K for the cold-pressed rGO/Ag;Se NW composite film with 0.01 wt%r GO.The rGO/Ag;Se NW composite film revealed superior flexibility as the power factor retained 94.62%after bending for 500 times with a bending radius of 4 mm,which might be due to the interwoven network structures of Ag;Se NWs and pliability of r GO as well as nylon membrane.These results demonstrated that the GO/Ag;Se NW composite film has a potential for preparation of flexible thermoelectric devices.