Studies In model plants showed that SEPALLATA (SEP) genes are required for the Identification of floral organs and the determination of floral meristems In Arabidopsis. In this paper a SEP homolog, TrSEP3, was Isola...Studies In model plants showed that SEPALLATA (SEP) genes are required for the Identification of floral organs and the determination of floral meristems In Arabidopsis. In this paper a SEP homolog, TrSEP3, was Isolated from a China-specific species, Taihangla rupestrisi Yü et LI. Phylogenetlc analysis showed that the gene belongs to the SEP3-clade of SEP (previous AGL2) subfamily. In situ hybridization was used to reveal the potential functional specification, and the results showed that TrSEP3 expression was first observed in floral meristems and then confined to the floral primordla of the three inner whorls. In the matured flower, TrSEP3 was strongly expressed In the tips of pistils and weak In stamens and petals. The evolution force analysis shows that TrSEP3 might undergo a relaxed negative selection. These results suggested that TrSEP3 may not only function In determining the identity of floral merlstems and the primordia of three inner whorls, but also function In matured reproductive organs.展开更多
基金Supported by the State Key Basic Research and Development Plan of China (2006CB100202) and the National Natural Science Foundation of China (30170093).Acknowledgements The authors would like to thank Dr Gui-Sheng Li (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for his helping on the analysis of selection force Dr Shihua Shen (Institute of Botany, the Chinese Academy of Sciences) for providing background information of Taihangia, and Dr Chun-Ming Liu for critical reading.
文摘Studies In model plants showed that SEPALLATA (SEP) genes are required for the Identification of floral organs and the determination of floral meristems In Arabidopsis. In this paper a SEP homolog, TrSEP3, was Isolated from a China-specific species, Taihangla rupestrisi Yü et LI. Phylogenetlc analysis showed that the gene belongs to the SEP3-clade of SEP (previous AGL2) subfamily. In situ hybridization was used to reveal the potential functional specification, and the results showed that TrSEP3 expression was first observed in floral meristems and then confined to the floral primordla of the three inner whorls. In the matured flower, TrSEP3 was strongly expressed In the tips of pistils and weak In stamens and petals. The evolution force analysis shows that TrSEP3 might undergo a relaxed negative selection. These results suggested that TrSEP3 may not only function In determining the identity of floral merlstems and the primordia of three inner whorls, but also function In matured reproductive organs.