High-performance dielectric polymer composites have received increasing attention due to their important applications in the field of energy storage.The rational structural design of hybrid fillers can lead to a balan...High-performance dielectric polymer composites have received increasing attention due to their important applications in the field of energy storage.The rational structural design of hybrid fillers can lead to a balance between high dielectric constant and insulation in composites.In this work,novel hybrid fillers were fabricated by in situ synthesizing one-dimensional polypyrrole nanowires(PPynws)on the twodimensional molybdenum disulfide(MoS_(2)),which integrated the good ion polarization ability of PPynws and the high insulation and adjustable band gap of MoS_(2).Compared with the binary poly(vinylidene fluoride)(PVDF)/MoS_(2) composites,the PVDF/MoS_(2)-PPynws composites exhibited remarkably improved dielectric constant and breakdown strength,while the dielectric loss was still maintained at a low level.An optimal ternary composite with 1 wt%MoS_(2)-PPynws showed a high dielectric constant(15@1kHz),suppressed dielectric loss(0.027@1kHz),and high breakdown strength(422.1 MV/m).PPynws inducing strong interfacial polarization and the highly insulated MoS_(2) nanosheets extending the breakdown path mainly contributed to the synchronously enhanced dielectric constant and breakdown strength.This intriguing synthesis method of PVDF/MoS_(2)-PPynws nanocomposite will open up new opportunities for fabricating nanostructured polymer composites to produce high dielectric materials.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51673159)the Youth Science and Technology Innovation Team of Sichuan Province of Functional Polymer Composites (No. 2021JDTD0009)supported by the Analytical and Testing Center of Southwest Jiaotong University
文摘High-performance dielectric polymer composites have received increasing attention due to their important applications in the field of energy storage.The rational structural design of hybrid fillers can lead to a balance between high dielectric constant and insulation in composites.In this work,novel hybrid fillers were fabricated by in situ synthesizing one-dimensional polypyrrole nanowires(PPynws)on the twodimensional molybdenum disulfide(MoS_(2)),which integrated the good ion polarization ability of PPynws and the high insulation and adjustable band gap of MoS_(2).Compared with the binary poly(vinylidene fluoride)(PVDF)/MoS_(2) composites,the PVDF/MoS_(2)-PPynws composites exhibited remarkably improved dielectric constant and breakdown strength,while the dielectric loss was still maintained at a low level.An optimal ternary composite with 1 wt%MoS_(2)-PPynws showed a high dielectric constant(15@1kHz),suppressed dielectric loss(0.027@1kHz),and high breakdown strength(422.1 MV/m).PPynws inducing strong interfacial polarization and the highly insulated MoS_(2) nanosheets extending the breakdown path mainly contributed to the synchronously enhanced dielectric constant and breakdown strength.This intriguing synthesis method of PVDF/MoS_(2)-PPynws nanocomposite will open up new opportunities for fabricating nanostructured polymer composites to produce high dielectric materials.