Phosphorylation is one of the most common post translational modifications (PTM), participating in a large number of processes to regulate cellular functions. Phosphorylation is also one of the key factors in the or...Phosphorylation is one of the most common post translational modifications (PTM), participating in a large number of processes to regulate cellular functions. Phosphorylation is also one of the key factors in the origin and development of cancer. The rapid development of mass spectrometric-based phosphoproteomic technologies has made it possible for high-throughput identification and quantification of phosphorylation events. In this review, we provide a general introduction and summary of the achievements made in mass spectrometry based phosphoproteomic research, including the approaches for phosphopeptide identification and quantification, as well as instrumentation and data interpretation methods. We also review some discoveries in cancer research made possible by phosphoproteomic analysis technologies.展开更多
文摘Phosphorylation is one of the most common post translational modifications (PTM), participating in a large number of processes to regulate cellular functions. Phosphorylation is also one of the key factors in the origin and development of cancer. The rapid development of mass spectrometric-based phosphoproteomic technologies has made it possible for high-throughput identification and quantification of phosphorylation events. In this review, we provide a general introduction and summary of the achievements made in mass spectrometry based phosphoproteomic research, including the approaches for phosphopeptide identification and quantification, as well as instrumentation and data interpretation methods. We also review some discoveries in cancer research made possible by phosphoproteomic analysis technologies.