期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An efficient unstructured WENO method for supersonic reactive flows 被引量:3
1
作者 Wen-Geng Zhao Hong-Wei Zheng +6 位作者 Feng-Jun Liu xiao-tian shi Jun Gao Ning Hu Meng Lv Si-Cong Chen Hong-Da Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期623-631,共9页
An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptiv... An efficient high-order numerical method for supersonic reactive flows is proposed in this article.The reactive source term and convection term are solved separately by splitting scheme.In the reaction step,an adaptive time-step method is presented,which can improve the efficiency greatly.In the convection step,a third-order accurate weighted essentially non-oscillatory(WENO)method is adopted to reconstruct the solution in the unstructured grids.Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids,while high order accuracy can be achieved in the smooth region.In addition,the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method. 展开更多
关键词 Supersonic reactive flows Adaptive splitting scheme Unstructured grids WENO reconstruction
下载PDF
Numerical simulations of compressible mixing layers with a discontinuous Galerkin method 被引量:6
2
作者 xiao-tian shi Jun Chen +2 位作者 Wei-Tao Bi Chi-Wang Shu Zhen-Su She 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第3期318-329,共12页
Discontinuous Galerkin(DG) method is known to have several advantages for flow simulations,in particular,in fiexible accuracy management and adaptability to mesh refinement. In the present work,the DG method is deve... Discontinuous Galerkin(DG) method is known to have several advantages for flow simulations,in particular,in fiexible accuracy management and adaptability to mesh refinement. In the present work,the DG method is developed for numerical simulations of both temporally and spatially developing mixing layers. For the temporally developing mixing layer,both the instantaneous fiow field and time evolution of momentum thickness agree very well with the previous results. Shocklets are observed at higher convective Mach numbers and the vortex paring manner is changed for high compressibility. For the spatially developing mixing layer,large-scale coherent structures and self-similar behavior for mean profiles are investigated. The instantaneous fiow field for a three-dimensional compressible mixing layer is also reported,which shows the development of largescale coherent structures in the streamwise direction. All numerical results suggest that the DG method is effective in performing accurate numerical simulations for compressible shear fiows. 展开更多
关键词 Compressible mixing layer - Discontinuous Galerkin method . Self-similarity . Coherent structure
下载PDF
Wavy structures in compressible mixing layers
3
作者 Jun Chen xiao-tian shi +1 位作者 Tie-Jin Wang Zhen-Su She 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期633-640,共8页
Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the l... Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the laserinduced planar laser Mie scattering (PLMS) technique. Two methods are developed to investigate the spatial distribu- tion and geometry of IWS: (1) the dominant mode extrac- tion (DME) method, to extract the dominant modes of IWS from the streamwise gray-level fluctuation, and (2) the phase tracking (PT) method, to identify the shape of IWS. The re- sults suggest that pressure perturbations account for the for- marion of IWS in the initial mixing region and the joint effect of dilatation and coherent vortices enhances IWS in the well- developed region. The large transverse (cross-flow) scale of the IWS and their relation to coherent vortices (CV) indicate that the disturbance originated from CV in the mixing center propagates far into the free streams. The DME and the PT method are shown to be the effective tools to study the geometrical features of wavy structures in compressible shear flows. 展开更多
关键词 Compressible mixing layer. Growth rate. Visu- alization STRUCTURES Coherent vortex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部