In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which ...In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.展开更多
In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes wer...In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes were characterized by scanning electron microscopy(SEM),X-ray diffractometer(XRD)and tensile tests.The type of substrates,Ar pressure and sputtering power had significant effects on the quality and chemical composition of Ti-Ni-Cu thin film.Compared with Si and SiO_(2) slides,it was easier to obtain freestanding films by adopting glass or piezoid slide as substrates.The Ti-Ni-Cu thin film deposited at lower pressure(0.10 Pa)had a better density.The surface was featured with porous structure in the Ti-Ni-Cu thin film prepared by higher Ar pressure of 0.36 Pa.In addition,both the tensile strength and strain of annealed Ti-Ni-Cu thin film continuously increased with Ar pressure decreasing.Higher density contributed to the superior mechanical properties.The deposition rate firstly increased and then decreased with Ar pressure and sputtering power increasing.The composition of deposited Ti-Ni-Cu film can be tailored by changing sputter power.The deposited Ti-Ni-Cu thin films at different processing parameters were in amorphous state.In short,the present study offered the important theoretical basis for the preparation of Ti-Ni-Cu thin film with higher quality and performance.展开更多
基金partial financial support from the National Natural Science Foundation of China (No. 52101231)the Science Fund of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing,China (No. AMGM2021F09)the Natural Science Foundation of Shandong Province,China (No. ZR2021QE044)。
基金financial support from the National Natural Science Foundation of China(Nos.52101231,52101232 and 51871079)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai)(No.AMGM2021F09)+1 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2021QE044)the Gansu Province Science and Technology Foundation for Youths(No.21JR7RA088).
文摘In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.
基金financially supported by the National Natural Science Foundation of China(Nos.51801023,51871080 and 51571073)the Industrial Transformation&Upgrading of Strong Base Project of China(No.TC150B5C0/03)。
文摘In order to attain high-quality Ti-Ni-Cu film,the surface morphologies,chemical compositions and mechanical properties of Ti-Ni-Cu thin films prepared by direct current(DC)magnetron sputtering at various processes were characterized by scanning electron microscopy(SEM),X-ray diffractometer(XRD)and tensile tests.The type of substrates,Ar pressure and sputtering power had significant effects on the quality and chemical composition of Ti-Ni-Cu thin film.Compared with Si and SiO_(2) slides,it was easier to obtain freestanding films by adopting glass or piezoid slide as substrates.The Ti-Ni-Cu thin film deposited at lower pressure(0.10 Pa)had a better density.The surface was featured with porous structure in the Ti-Ni-Cu thin film prepared by higher Ar pressure of 0.36 Pa.In addition,both the tensile strength and strain of annealed Ti-Ni-Cu thin film continuously increased with Ar pressure decreasing.Higher density contributed to the superior mechanical properties.The deposition rate firstly increased and then decreased with Ar pressure and sputtering power increasing.The composition of deposited Ti-Ni-Cu film can be tailored by changing sputter power.The deposited Ti-Ni-Cu thin films at different processing parameters were in amorphous state.In short,the present study offered the important theoretical basis for the preparation of Ti-Ni-Cu thin film with higher quality and performance.