期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Targeting cancer cytoskeleton: the mechanical properties of natural anticancerdrugs
1
作者 Xiao-Hui Ruo-Yi Lyu +2 位作者 Zhi-Gang Sun Hong Dong xiao-ye li 《Cancer Advances》 2023年第21期1-10,共10页
Anticancer drugs are one of the most direct means of cancer therapy.However,the various cancer progressions hamper the development and discovery of anticancer drugs.In fact,the mechanical properties of the tumor cytos... Anticancer drugs are one of the most direct means of cancer therapy.However,the various cancer progressions hamper the development and discovery of anticancer drugs.In fact,the mechanical properties of the tumor cytoskeleton are extremely vital for any phase of cancer,especially in tumor invasion and metastasis.However,in the current category of anticancer drugs,the cytoskeleton-targeting drugs are limited and their role in tumor progression is unclear.Here,we present the mechanical characteristics of tumor stiffness that are tightly regulated by the cancer cytoskeleton,including actin filaments and microtubules during tumor initiation,growth and metastasis,and review the natural drugs that target the cancer cytoskeleton.We define cytoskeleton dynamics as target mechanisms for anticancer drugs and summarize the plant,microbial and marine sources of natural products.Furthermore,this paper also provides a material pathway to study active tumor mechanics,and introduces the unique advantages and future application potential of tumor cytoskeleton-targeting drugs in clinical use.The material approaches to active cancer mechanics are supplied in this review.We aim to promote the development of anticancer drugs that target tumor mechanics by using those material approaches and finding their pharmacological application. 展开更多
关键词 anticancer drugs mechanical microenvironment tumor stiffness cytoskeleton dynamics material approaches
下载PDF
Ultrasound-responsive microbubbles in antibacterial therapy
2
作者 xiao-ye li Wei-Jun Xiu +1 位作者 Dong-liang Yang Heng Dong 《Biomedical Engineering Communications》 2023年第2期1-3,共3页
Microbubbles(MBs)are gas-filled micrometer-scale spheres that are commonly formed by the gas core encapsulated with stabilizing shells,including polymers,surfactants,proteins,or liposomes shells.Clinically,MBs were or... Microbubbles(MBs)are gas-filled micrometer-scale spheres that are commonly formed by the gas core encapsulated with stabilizing shells,including polymers,surfactants,proteins,or liposomes shells.Clinically,MBs were originally used as contrast agents for enhanced ultrasound(US)imaging and diagnostics.Nowadays,MBs were given expectations that they can be alternative platforms for drug delivery owing to their unique acoustic properties.MBs can respond to the US by cavitation effect which refers to a series of complex dynamic processes,such as oscillation,expansion,contraction,and implosion[1].Drug molecules or therapeutic agents can be associated with the MB shells by means of van-der-Waals forces,electrostatic or hydrophobic interactions,or merely by physical encapsulation[2].Therefore,strategies are emerging which take advantages of US-mediated MBs drug delivery systems,mainly focusing on sonothrombolysis,cancer therapy and central nervous system(CNS)pathologies[3].Nevertheless,several researchers have apperceived the promising potential of US-responsive MBs in antibacterial therapy.Here,we aimed to paint an overview of the latest published papers on MBs for antibacterial therapy,hoping to help understand the perspectives that the field may offer emerging generations of antibacterial agents. 展开更多
关键词 properties. SHELLS CAVITATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部