Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accum...Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs(lnc RNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. Data sources: We carried out a systematic review on lnc RNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lnc RNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in Pub Med with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lnc RNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. Results: Lnc RNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting mi RNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. Conclusions: The functional lnc RNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.展开更多
基金supported by grants from the Scientific Research Fund of National Health Commission of China-Key Health Science and Technology Program of Zhejiang Province (WKJ-ZJ-2201)the Key Project of Social Welfare Program of Zhejiang Science and Technology Department,“Lingyan” Program (2022C03099)。
文摘Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs(lnc RNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. Data sources: We carried out a systematic review on lnc RNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lnc RNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in Pub Med with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lnc RNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. Results: Lnc RNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting mi RNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. Conclusions: The functional lnc RNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.