期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
放电等离子烧结Cu-2Cr-1Nb合金的显微组织与性能 被引量:1
1
作者 任亚科 吕学谦 +6 位作者 刘祖铭 魏冰 雷霆 李全 纪效波 邓文韬 艾永康 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2276-2289,共14页
以紧耦合氩气雾化合金粉末为原料,采用放电等离子烧结(SPS)制备Cu-2Cr-1Nb合金。通过L9(3^(4))正交试验优化得到的最优SPS参数为950℃、50 MPa和15 min,所制备合金的相对密度为99.8%。SPS快速致密化有效地抑制Cr_(2)Nb相长大,并保持雾... 以紧耦合氩气雾化合金粉末为原料,采用放电等离子烧结(SPS)制备Cu-2Cr-1Nb合金。通过L9(3^(4))正交试验优化得到的最优SPS参数为950℃、50 MPa和15 min,所制备合金的相对密度为99.8%。SPS快速致密化有效地抑制Cr_(2)Nb相长大,并保持雾化粉末的基体组织,获得分布均匀、尺度为0.10~0.40μm和20~100 nm的多尺度Cr_(2)Nb相以及平均尺寸为3.79μm的基体晶粒。经500℃、2 h热处理所制备Cu-2Cr-1Nb合金的室温抗拉强度、电导率和热导率分别达到332 MPa、86.7%(IACS)和323.1 W/(m·K),高温抗拉强度(700℃)为76 MPa。 展开更多
关键词 Cu-Cr-Nb合金 放电等离子烧结 Cr_(2)Nb相 显微组织 性能
下载PDF
2-氨甲基吡啶衍生物聚合物包合膜选择性回收Cu(Ⅱ)
2
作者 邱雪景 汤佳 +3 位作者 谭军 胡慧萍 纪效波 胡久刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3591-3601,共11页
以不同2-氨甲基吡啶类衍生物(N,N-二(叔丁氧羰基亚甲基)-2-氨甲基吡啶、N,N-二辛基-2-氨甲基吡啶、N-叔氧羰基亚甲基-N-辛基-2-氨甲基吡啶、N,N-二癸基-2-氨甲基吡啶)为载体,制备以聚氯乙烯(PVC)为膜基材的系列聚合物包容膜(PIM);通过... 以不同2-氨甲基吡啶类衍生物(N,N-二(叔丁氧羰基亚甲基)-2-氨甲基吡啶、N,N-二辛基-2-氨甲基吡啶、N-叔氧羰基亚甲基-N-辛基-2-氨甲基吡啶、N,N-二癸基-2-氨甲基吡啶)为载体,制备以聚氯乙烯(PVC)为膜基材的系列聚合物包容膜(PIM);通过优化载体分子结构和塑化剂类型,考察聚合物包容膜的铜离子渗透通量和分离选择性。结果表明:含有长碳链的疏水性吡啶类衍生物有助于提高铜离子传质通量和膜的稳定性。在PVC含量为30%(质量分数),N,N-二癸基-2-氨甲基吡啶为30%(质量分数),塑化剂为40%(质量分数)时,铜离子的渗透通量可达5.8×10^(-6)mol·m^(-2)·s^(-1)。FT-IR和XPS分析结果表明,N,N-二癸基-2-氨甲基吡啶上的氨基官能团参与铜离子的配位,SAXS分析证实2-氨甲基吡啶类衍生物的疏水性改性有利于膜中微通道的形成,从而促进铜离子在膜内的传质。 展开更多
关键词 疏水性改性 2-氨甲基吡啶类衍生物 聚合物包容膜 铜离子分离
下载PDF
Editorial for special issue on advanced materials for energy storage and conversion 被引量:4
3
作者 Qiao-bao Zhang Yong-chang Liu xiao-bo ji 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1545-1548,共4页
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy... The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability. 展开更多
关键词 ENERGY utilizing LITHIUM
下载PDF
Using support vector machine for materials design 被引量:9
4
作者 Wen-Cong Lu xiao-bo ji +3 位作者 Min-jie Li Liang Liu Bao-Hua Yue Liang-Miao Zhang 《Advances in Manufacturing》 SCIE CAS 2013年第2期151-159,共9页
Materials design is the most important and fundamental work on the background of materials genome initiative for global competitiveness proposed by the National Science and Technology Council of America. As far as the... Materials design is the most important and fundamental work on the background of materials genome initiative for global competitiveness proposed by the National Science and Technology Council of America. As far as the methodologies of materials design, besides the thermodynamic and kinetic methods combing databases, both deductive approaches so-called the first principle methods and inductive approaches based on data mining methods are gaining great progress because of their suc- cessful applications in materials design. In this paper, support vector machine (SVM), including support vector classification (SVC) and support vector regression (SVR) based on the statistical learning theory (SLT) proposed by Vapnik, is introduced as a relatively new data mining method to meet the different tasks of materials design in our lab. The advantage of using SVM for materials design is discussed based on the applications in the formability of perovskite or BaNiO3 structure, the prediction of energy gaps of binary compounds, the prediction of sintered cold modulus of sialon-corundum castable, the optimization of electric resistances of VPTC semiconductors and the thickness control of In203 semiconductor film preparation. The results presented indicate that SVM is an effective modeling tool for the small sizes of sample sets with great potential applications in materials design. 展开更多
关键词 Support vector machine Materials genomeinitiative Materials design Data mining QUANTITATIVE
原文传递
Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery 被引量:2
5
作者 Di Wang Peng Cai +4 位作者 Guo-Qiang Zou Hong-Shuai Hou xiao-bo ji Ye Tian Zhen Long 《Rare Metals》 SCIE EI CAS CSCD 2022年第1期115-124,共10页
Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic... Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic transport of Na_(3)V_(2)(PO_(4))_(3)limits the cycling stability and rate performances in SIBs.In this work,high-performance conductive carbon-coated Na_(3)V_(2)(PO_(4))_(3)materials are obtained via a simple and facile ball-milling assisted solid-state method by utilizing citric acid as carbon sources.The carbon-coated composite electrodes display a high initial specific capacity of 111.6 mAh·g^(-1),and the specific capacity could retention reach 92.83%after 100 cycles at 1C with the high coulombic efficiency(99.95%).More importantly,the capacity of conductive carbon-coated nano-sized Na_(3)V_(2)(PO_(4))_(3)can remain 48.5 mAh·g^(-1) at 10℃after 3000 cycles(initial capacity of 101.2 mAh·g^(-1)).At the same time,high coulombic efficiency(near 100%)has little decay even at a high rate of 20℃during 1000 cycles,demonstrating the excellent cycling stability and remarkable rate performances,and showing potential in largescale productions and applications. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) Sodium superionic conductor structures Ball-milling CATHODE Sodium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部