期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation,microstructure and degradation behavior of Mg−2Zn−0.4Sc−0.2Zr alloy wire
1
作者 Yu-qing HE Ri-chu WANG +3 位作者 xiao-hui duan Xiang PENG Yu-si CHEN Yan FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3585-3598,共14页
A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal se... A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal section along the drawing direction is approximately 7.3μm.The texture results show relatively strong<1020>and weak<1010>fiber texture components parallel to the drawing direction.The ZK20−0.4Sc alloy wire exhibits better mechanical properties with the tensile strength,yield strength and elongate of(329±2)MPa,(287±2)MPa and(14.2±0.5)%,respectively.The better mechanical properties are mainly attributed to the grain refinement strengthening,dislocation strengthening and precipitation strengthening.With the immersion time increasing to 14 d,the corrosion type transfers from filament corrosion and pitting corrosion to severe localized corrosion. 展开更多
关键词 Mg alloy wire cold drawing MICROSTRUCTURE mechanical properties degradation behavior
下载PDF
First Principles Study of AI-Li Intermetallic Compounds 被引量:1
2
作者 Hai-li Yu xiao-hui duan +1 位作者 Yong-jun Ma Min Zeng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第6期659-665,I0003,共8页
The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary A1-Li intermetallics, A13Li, A1Li, A12Li3, and A14Li9, are ana- lyzed in detail by using dens... The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary A1-Li intermetallics, A13Li, A1Li, A12Li3, and A14Li9, are ana- lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between A1 and Li for all the A1-Li intermetallics. In partic- ular, in the Li-rich A1-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of.Li. According to the computational single crystal elastic constants, all the four A1-Li intermetallic compounds considered here are mechani- cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary A1-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of A1-Li intermetallics decreases in a linear manner. 展开更多
关键词 First principles A1-Li intermetallic compound Mechanical property Forma-tion heat Elastic properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部