With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the...With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and largegap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "peripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad- ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.展开更多
To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was in...To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.展开更多
Neurogenic bladder is a dysfunction of the lower urinary tract caused by nervous system disor- der. We investigated the trends in publication of articles under the topic "neurogenic bladder" using bibliometric analy...Neurogenic bladder is a dysfunction of the lower urinary tract caused by nervous system disor- der. We investigated the trends in publication of articles under the topic "neurogenic bladder" using bibliometric analysis. Articles on neurogenic bladder, published between 1995 and 2014, were retrieved from the ISI Web of Science citation database. We analyzed the search results for authors, countries, institutions, journals, and top-cited papers. A total of 1,904 articles were re- trieved. There was a small increase in the number of articles on neurogenic bladder from 1995 (n = 43) to 2014 (n = 117). The USA was the leading country in the total number of articles (n = 598). However, the number of publications from China has rapidly increased, and China was ranked second in 2014. Emmanuel Chartier-Kastler (n = 65) was the most productive author, and University of Paris VI (Paris 6) (n = 61) was the most productive institution. The Journal of Urology published the greatest number of artides on this topic (n = 285). Articles on neurogenic bladder were often published in a professional journal under the category Urology & Nephrology, Neurosciences & Neurology, or Rehabilitation. Visualization analysis based on co-citation networks was conducted using CiteSpace III. Visualization analysis revealed that the hot spots in neurogenic bladder were botulinum toxin-A, prazosin, bethanechol, and afferent pathways. These findings provide new insight into the publication trends and hot spots in neurogenic bladder.展开更多
文摘With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and largegap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "peripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany), Washington University (USA), and Nantong University (China). The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad- ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.
基金The work was supported by the National Natural Science Foundation of China(No.51401115)the Promoted Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(No.BS2013CL034)partially by the Fundamental Research Funds of Shandong University,China(2016JC016).
文摘To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.
文摘Neurogenic bladder is a dysfunction of the lower urinary tract caused by nervous system disor- der. We investigated the trends in publication of articles under the topic "neurogenic bladder" using bibliometric analysis. Articles on neurogenic bladder, published between 1995 and 2014, were retrieved from the ISI Web of Science citation database. We analyzed the search results for authors, countries, institutions, journals, and top-cited papers. A total of 1,904 articles were re- trieved. There was a small increase in the number of articles on neurogenic bladder from 1995 (n = 43) to 2014 (n = 117). The USA was the leading country in the total number of articles (n = 598). However, the number of publications from China has rapidly increased, and China was ranked second in 2014. Emmanuel Chartier-Kastler (n = 65) was the most productive author, and University of Paris VI (Paris 6) (n = 61) was the most productive institution. The Journal of Urology published the greatest number of artides on this topic (n = 285). Articles on neurogenic bladder were often published in a professional journal under the category Urology & Nephrology, Neurosciences & Neurology, or Rehabilitation. Visualization analysis based on co-citation networks was conducted using CiteSpace III. Visualization analysis revealed that the hot spots in neurogenic bladder were botulinum toxin-A, prazosin, bethanechol, and afferent pathways. These findings provide new insight into the publication trends and hot spots in neurogenic bladder.